Home
Class 12
MATHS
If z be any complex number (z!=0) then ...

If z be any complex number `(z!=0)` then `arg((z-i)/(z+i))=pi/2`represents the curve

A

`|z|=1`

B

`|z|=1, "Re"(z) gt 0`

C

`|z|=1, "Re"(z) lt 0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and find out what the condition `arg((z-i)/(z+i)) = pi/2` represents in terms of a curve. ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression: \[ \arg\left(\frac{z - i}{z + i}\right) = \frac{\pi}{2} \] This means that the argument of the complex number \(\frac{z - i}{z + i}\) is \(\frac{\pi}{2}\). 2. **Using the Property of Argument**: We can use the property of the argument of a quotient: \[ \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) \] Thus, we can rewrite our expression as: \[ \arg(z - i) - \arg(z + i) = \frac{\pi}{2} \] 3. **Substituting \( z \)**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then: \[ z - i = x + (y - 1)i \] \[ z + i = x + (y + 1)i \] 4. **Finding the Arguments**: The arguments can be computed as: \[ \arg(z - i) = \tan^{-1}\left(\frac{y - 1}{x}\right) \] \[ \arg(z + i) = \tan^{-1}\left(\frac{y + 1}{x}\right) \] 5. **Setting Up the Equation**: Substituting these into our earlier equation gives: \[ \tan^{-1}\left(\frac{y - 1}{x}\right) - \tan^{-1}\left(\frac{y + 1}{x}\right) = \frac{\pi}{2} \] 6. **Using the Tangent Difference Formula**: We can use the tangent difference formula: \[ \tan\left(\tan^{-1}(A) - \tan^{-1}(B)\right) = \frac{A - B}{1 + AB} \] Setting \( A = \frac{y - 1}{x} \) and \( B = \frac{y + 1}{x} \), we have: \[ \tan\left(\frac{\pi}{2}\right) = \infty \] This implies that the denominator must be zero: \[ 1 + \left(\frac{y - 1}{x}\right)\left(\frac{y + 1}{x}\right) = 0 \] 7. **Simplifying the Denominator**: Simplifying the denominator gives: \[ 1 + \frac{(y - 1)(y + 1)}{x^2} = 0 \] \[ 1 + \frac{y^2 - 1}{x^2} = 0 \] \[ \frac{y^2 - 1 + x^2}{x^2} = 0 \] This leads to: \[ y^2 + x^2 = 1 \] 8. **Conclusion**: The equation \( x^2 + y^2 = 1 \) represents a circle with radius 1 centered at the origin in the complex plane. Therefore, the curve represented by the given condition is a circle. ### Final Answer: The curve represented by the condition \( \arg\left(\frac{z - i}{z + i}\right) = \frac{\pi}{2} \) is a circle given by the equation: \[ x^2 + y^2 = 1 \]

To solve the problem, we need to analyze the expression given and find out what the condition `arg((z-i)/(z+i)) = pi/2` represents in terms of a curve. ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression: \[ \arg\left(\frac{z - i}{z + i}\right) = \frac{\pi}{2} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

If z be a complex number, then |z-3-4i|^(2)+|z+4+2i|^(2)=k represents a circle, if k is equal to

Let z_1=6+i and z_2=4-3i . If z is a complex number such thar arg ((z-z_1)/(z_2-z))= pi/2 then (A) |z-(5-i)=sqrt(5) (B) |z-(5+i)=sqrt(5) (C) |z-(5-i)|=5 (D) |z-(5+i)|=5

Let z_1=10+6i and z_2=4+6idot If z is any complex number such that the argument of ((z-z_1))/((z-z_2)) is pi/4, then prove that |z-7-9i|=3sqrt(2) .

Find the locus of a complex number z such that arg ((z-2)/(z+2))= (pi)/(3)

Let z be any non-zero complex number. Then arg(z) + arg (barz) is equal to

Let z!=i be any complex number such that (z-i)/(z+i) is a purely imaginary number. Then z+ 1/z is

Let Z and w be two complex number such that |zw|=1 and arg(z)−arg(w)=pi//2 then

Let z be a complex number such that |(z-5i)/(z+5i)|=1 , then show that z is purely real

Complex number z lies on the curve S-= arg(z+3)/(z+3i) =-(pi)/(4)

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If z be any complex number (z!=0) then arg((z-i)/(z+i))=pi/2represen...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |