Home
Class 12
MATHS
{(1+cospi//8+isinipi//8)/(1+cospi//8-isi...

`{(1+cospi//8+isinipi//8)/(1+cospi//8-isinpi//8)}^(8)=`

A

`1+i`

B

`1-i`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1 + \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}}{1 + \cos \frac{\pi}{8} - i \sin \frac{\pi}{8}}\right)^{8}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{1 + \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}}{1 + \cos \frac{\pi}{8} - i \sin \frac{\pi}{8}} \] We can use the identity \(1 + \cos \theta = 2 \cos^2 \frac{\theta}{2}\) to rewrite \(1 + \cos \frac{\pi}{8}\): \[ 1 + \cos \frac{\pi}{8} = 2 \cos^2 \frac{\pi}{16} \] Thus, we can rewrite the expression as: \[ \frac{2 \cos^2 \frac{\pi}{16} + i \sin \frac{\pi}{8}}{2 \cos^2 \frac{\pi}{16} - i \sin \frac{\pi}{8}} \] ### Step 2: Rewrite \(\sin \frac{\pi}{8}\) Using the double angle formula for sine, we have: \[ \sin \frac{\pi}{8} = 2 \sin \frac{\pi}{16} \cos \frac{\pi}{16} \] Substituting this into our expression gives: \[ \frac{2 \cos^2 \frac{\pi}{16} + i \cdot 2 \sin \frac{\pi}{16} \cos \frac{\pi}{16}}{2 \cos^2 \frac{\pi}{16} - i \cdot 2 \sin \frac{\pi}{16} \cos \frac{\pi}{16}} \] ### Step 3: Factor out common terms We can factor out \(2 \cos \frac{\pi}{16}\) from both the numerator and the denominator: \[ \frac{2 \cos \frac{\pi}{16} \left(\cos \frac{\pi}{16} + i \sin \frac{\pi}{16}\right)}{2 \cos \frac{\pi}{16} \left(\cos \frac{\pi}{16} - i \sin \frac{\pi}{16}\right)} \] This simplifies to: \[ \frac{\cos \frac{\pi}{16} + i \sin \frac{\pi}{16}}{\cos \frac{\pi}{16} - i \sin \frac{\pi}{16}} \] ### Step 4: Use Euler's formula Using Euler's formula \(e^{i\theta} = \cos \theta + i \sin \theta\), we can rewrite the expression as: \[ \frac{e^{i \frac{\pi}{16}}}{e^{-i \frac{\pi}{16}}} \] This simplifies to: \[ e^{i \frac{\pi}{16} + i \frac{\pi}{16}} = e^{i \frac{\pi}{8}} \] ### Step 5: Raise to the power of 8 Now we raise the expression to the power of 8: \[ \left(e^{i \frac{\pi}{8}}\right)^{8} = e^{i \pi} \] ### Step 6: Evaluate \(e^{i \pi}\) Using Euler's formula again, we know that: \[ e^{i \pi} = \cos \pi + i \sin \pi = -1 + 0i = -1 \] ### Final Answer Thus, the final answer is: \[ \boxed{-1} \]

To solve the expression \(\left(\frac{1 + \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}}{1 + \cos \frac{\pi}{8} - i \sin \frac{\pi}{8}}\right)^{8}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{1 + \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}}{1 + \cos \frac{\pi}{8} - i \sin \frac{\pi}{8}} \] We can use the identity \(1 + \cos \theta = 2 \cos^2 \frac{\theta}{2}\) to rewrite \(1 + \cos \frac{\pi}{8}\): ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Find the value of following expression: [(1-cospi/(10)+isinpi/(10))/(1-cospi/(10)-isinpi/(10))]^(10)

Find the value of following expression: [(1-cospi/(10)+isinpi/(10))/(1-cospi/(10)-isinpi/(10))]^(10)

Column I, Column II (one of the values of z ) z^4-1=0 , p. z=cospi/8+isinpi/8 z^4+1=0 , q. z=cospi/8-isinpi/8 i z^4+1=0 , r. z=cospi/4isinpi/4 i z^4-1=0 , s. z=cos0+isin0

The expression [(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8 is equal is

The value of (1+cospi/8)(1+cos(3pi)/8)(1+cos(5pi)/8)(1+cos(7pi)/8)i s (a)1/4 (b) 3/4 (c) 1/8 (d) 3/8

Prove that: sin((3pi)/8-5)cos( pi/8+5)+cos((3pi)/8-5)sin(pi/8+5)=1

The polar form of (i^(25))^3 is a. cos(pi/2)+isin(pi/2) b. cospi+i\ sinpi c. cospi-isinpi d. cos(pi/2)-\ i sin(pi/2)

Prove that: (1+cos. (pi)/8)(1+cos. (3pi)/8)(1+cos. (5pi)/8)(1+cos. (7pi)/8)=1/8

Prove that: i) sin40^(@)cos50^(@)+cos40^(@)sin50^(@)=1 ii) cot(270^(@)-theta)cot(270^(@)+theta)(cot(540^(@)-theta)cot(540^(@)+theta)=1 iii) cospi/8+cos(3pi)/8+cos(5pi)/8+cos(7pi)/8=0

If y="sec"(tan^(-1)x),t h e n(dy)/(dx)a tx=1 is (a) cospi/4 (b) sinpi/2 (c) sinpi/6 (d) cospi/3

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. {(1+cospi//8+isinipi//8)/(1+cospi//8-isinpi//8)}^(8)=

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |