Home
Class 12
MATHS
If x(n)=cos(pi/2^(n))+isin(pi/2^(n)), n ...

If `x_(n)=cos(pi/2^(n))+isin(pi/2^(n)), n in N` then `x_(1),x_(2),x_(3)………………..x_(infty)`. Is equal to

A

1

B

`-1`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( x_1 \times x_2 \times x_3 \times \ldots \times x_\infty \) where \( x_n = \cos\left(\frac{\pi}{2^n}\right) + i \sin\left(\frac{\pi}{2^n}\right) \). ### Step-by-Step Solution: 1. **Express \( x_n \) in Exponential Form**: \[ x_n = \cos\left(\frac{\pi}{2^n}\right) + i \sin\left(\frac{\pi}{2^n}\right) = e^{i \frac{\pi}{2^n}} \] 2. **Write the Product**: We need to find the product: \[ x_1 \times x_2 \times x_3 \times \ldots = e^{i \frac{\pi}{2^1}} \times e^{i \frac{\pi}{2^2}} \times e^{i \frac{\pi}{2^3}} \times \ldots \] 3. **Combine the Exponents**: Using the property of exponents, we can combine the product: \[ x_1 \times x_2 \times x_3 \times \ldots = e^{i \left(\frac{\pi}{2^1} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \ldots\right)} \] 4. **Identify the Series**: The series inside the exponent is: \[ \frac{\pi}{2} + \frac{\pi}{4} + \frac{\pi}{8} + \ldots \] This is a geometric series where the first term \( a = \frac{\pi}{2} \) and the common ratio \( r = \frac{1}{2} \). 5. **Sum the Infinite Geometric Series**: The sum \( S \) of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S = \frac{\frac{\pi}{2}}{1 - \frac{1}{2}} = \frac{\frac{\pi}{2}}{\frac{1}{2}} = \pi \] 6. **Substitute Back to the Exponential**: Now substitute back into the exponent: \[ x_1 \times x_2 \times x_3 \times \ldots = e^{i \pi} \] 7. **Evaluate \( e^{i \pi} \)**: Using Euler's formula: \[ e^{i \pi} = \cos(\pi) + i \sin(\pi) = -1 + 0i = -1 \] ### Final Result: Thus, the product \( x_1 \times x_2 \times x_3 \times \ldots \) converges to: \[ \boxed{-1} \]

To solve the problem, we need to find the product \( x_1 \times x_2 \times x_3 \times \ldots \times x_\infty \) where \( x_n = \cos\left(\frac{\pi}{2^n}\right) + i \sin\left(\frac{\pi}{2^n}\right) \). ### Step-by-Step Solution: 1. **Express \( x_n \) in Exponential Form**: \[ x_n = \cos\left(\frac{\pi}{2^n}\right) + i \sin\left(\frac{\pi}{2^n}\right) = e^{i \frac{\pi}{2^n}} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If x_(n)=cospi/3^(n)+isin(pi)/(3^(n)) , then x_(1),x_(2),x_(3),………………..x_(infty) is equal to

If x_n =cos pi/(2^n) +isin pi/(2^n) , prove that x_1x_2x_3 x_oo=-1.

If x_n=cos(pi/(2^n))+isin(pi/(2^n)) , prove that x_1x_2x_3........... x_oo=-1.

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If f(x) = cos(x)cos(2x)cos(2^(2)x)…cos(2^(n-1)x) and n gt1 , then f'((pi)/(2)) is

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

cos^(-1)((1-x^(2n))/(1+x^(2n)))

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If x(n)=cos(pi/2^(n))+isin(pi/2^(n)), n in N then x(1),x(2),x(3)………………...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |