Home
Class 12
MATHS
If x+(1)/(x)=2costheta, then x^(n)+(1)...

If `x+(1)/(x)=2costheta`, then `x^(n)+(1)/(x^(n))` is equal to

A

`2cosntheta`

B

`2sinntheta`

C

`cosntheta`

D

`sinntheta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + \frac{1}{x} = 2 \cos \theta \) and we need to find \( x^n + \frac{1}{x^n} \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ x + \frac{1}{x} = 2 \cos \theta \] ### Step 2: Multiply both sides by \( x \) Multiplying both sides by \( x \) gives: \[ x^2 + 1 = 2x \cos \theta \] ### Step 3: Rearrange into standard quadratic form Rearranging the equation, we get: \[ x^2 - 2x \cos \theta + 1 = 0 \] ### Step 4: Apply the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -2 \cos \theta, c = 1 \): \[ x = \frac{2 \cos \theta \pm \sqrt{(2 \cos \theta)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ = \frac{2 \cos \theta \pm \sqrt{4 \cos^2 \theta - 4}}{2} \] \[ = \frac{2 \cos \theta \pm 2 \sqrt{\cos^2 \theta - 1}}{2} \] \[ = \cos \theta \pm \sqrt{\cos^2 \theta - 1} \] ### Step 5: Simplify the square root Since \( \cos^2 \theta - 1 = -\sin^2 \theta \): \[ = \cos \theta \pm i \sin \theta \] ### Step 6: Express \( x \) in exponential form Thus, we can express \( x \) as: \[ x = e^{i\theta} \quad \text{or} \quad x = e^{-i\theta} \] ### Step 7: Calculate \( x^n \) Now, we can calculate \( x^n \): \[ x^n = (e^{i\theta})^n = e^{in\theta} \quad \text{or} \quad x^n = (e^{-i\theta})^n = e^{-in\theta} \] ### Step 8: Calculate \( \frac{1}{x^n} \) The reciprocal is: \[ \frac{1}{x^n} = e^{-in\theta} \quad \text{or} \quad \frac{1}{x^n} = e^{in\theta} \] ### Step 9: Add \( x^n \) and \( \frac{1}{x^n} \) Now, we add \( x^n \) and \( \frac{1}{x^n} \): \[ x^n + \frac{1}{x^n} = e^{in\theta} + e^{-in\theta} \] Using Euler's formula, this simplifies to: \[ = 2 \cos(n\theta) \] ### Final Answer Thus, we conclude that: \[ x^n + \frac{1}{x^n} = 2 \cos(n\theta) \] ---

To solve the problem where \( x + \frac{1}{x} = 2 \cos \theta \) and we need to find \( x^n + \frac{1}{x^n} \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ x + \frac{1}{x} = 2 \cos \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x(x^n+1)) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

int(x+(1)/(x))^(n+5).((x^(2)-1)/(x^(2)))dx is equal to

If 1//x+x=2costheta , then prove that x^n+1//x^n=2cosnthetadot

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

If the coefficient of x^(2) + coefficient of x in the expanssion of (1+x)^(m)(1-x)^(n),(mnen) is equal to – m, then the value of n – m is equal to:

The total number of terms which are dependent on the value of x in the expansion of (x^2-2+1/(x^2))^n is equal to 2n+1 b. 2n c. n d. n+1

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to 1+x (b) 1-x (c) x (d) 1/x

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to 1+x (b) 1-x (c) x (d) 1/x

If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1+sintheta) is equal to (a) 1+x (b) 1-x (c) x (d) 1/x

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If x+(1)/(x)=2costheta, then x^(n)+(1)/(x^(n)) is equal to

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |