Home
Class 12
MATHS
The argument of (1-isqrt(3))/(1+isqrt(3)...

The argument of `(1-isqrt(3))/(1+isqrt(3))`, is

A

`pi/3`

B

`(2pi)/3`

C

`(7pi)/6`

D

`-(2pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\), we can follow these steps: ### Step 1: Write the complex number in standard form We start with the complex number: \[ z = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} \] ### Step 2: Multiply the numerator and denominator by the conjugate of the denominator To simplify, we multiply both the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(1 - i\sqrt{3})(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (1 + i\sqrt{3})(1 - i\sqrt{3}) = 1^2 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] ### Step 4: Expand the numerator Now, we expand the numerator: \[ (1 - i\sqrt{3})(1 - i\sqrt{3}) = 1 - 2i\sqrt{3} + (i\sqrt{3})^2 = 1 - 2i\sqrt{3} - 3 = -2 - 2i\sqrt{3} \] ### Step 5: Combine results Now we can write \(z\) as: \[ z = \frac{-2 - 2i\sqrt{3}}{4} = -\frac{1}{2} - \frac{i\sqrt{3}}{2} \] ### Step 6: Identify the real and imaginary parts From the expression \(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\), we identify: - Real part \(x = -\frac{1}{2}\) - Imaginary part \(y = -\frac{\sqrt{3}}{2}\) ### Step 7: Calculate the argument The argument \(\theta\) of a complex number \(z = x + iy\) is given by: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] Substituting the values: \[ \theta = \tan^{-1}\left(\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(\sqrt{3}) \] ### Step 8: Determine the angle Since both \(x\) and \(y\) are negative, the complex number lies in the third quadrant. The reference angle for \(\tan^{-1}(\sqrt{3})\) is \(\frac{\pi}{3}\). Therefore, the argument in the third quadrant is: \[ \theta = \pi + \frac{\pi}{3} = \frac{3\pi}{3} + \frac{\pi}{3} = \frac{4\pi}{3} \] ### Final Answer Thus, the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\) is: \[ \frac{4\pi}{3} \]

To find the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\), we can follow these steps: ### Step 1: Write the complex number in standard form We start with the complex number: \[ z = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

The principal argument of (1-isqrt(3))/(1+isqrt(3))

The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(6) is

The amplitude of (1+isqrt(3))/(sqrt(3)+i) is a. pi/3 b. -pi/3 c. pi/6 d. -pi/6

If the arguments of (1-i)(sqrt3+i)(1+sqrt3i) and (Z-2)(barZ-1) are equal, then the locus to Z is part of a circle with centre (a, b). The value of (1)/(a+b) is

Write the argument of (1+isqrt(3))(1+i)(costheta+isintheta) .

For any integer n, the argument of ((sqrt3+i)^(4n+1))/((1-isqrt3)^(4n))

The amplitude of (-2)/(1+isqrt(3)) is

The principal argument (1+isqrt(3))^(2) is

Find the value of : (1+ isqrt(3))^(2) + (1-isqrt(3))^(2)

If a , b ,c real in G.P., then the roots of the equation a x^2+b x+c=0 are in the ratio a. 1/2(-1+isqrt(3)) b. 1/2(1-isqrt(3)) c 1/2(-1-isqrt(3)) d. 1/2(1+isqrt(3))

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. The argument of (1-isqrt(3))/(1+isqrt(3)), is

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |