Home
Class 12
MATHS
If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then...

If `z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4,` then `a r g(z)=`

A

`(5pi)/6`

B

`-pi/6`

C

`pi/6`

D

`(7pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z(2 - 2\sqrt{3}i)^2 = i(\sqrt{3} + i)^4 \) and find the argument of \( z \), we will follow these steps: ### Step 1: Expand the left-hand side We start by expanding \( (2 - 2\sqrt{3}i)^2 \): \[ (2 - 2\sqrt{3}i)^2 = 2^2 - 2 \cdot 2 \cdot 2\sqrt{3}i + (2\sqrt{3}i)^2 \] Calculating each term: - \( 2^2 = 4 \) - \( -2 \cdot 2 \cdot 2\sqrt{3}i = -8\sqrt{3}i \) - \( (2\sqrt{3}i)^2 = 4 \cdot 3 \cdot i^2 = 12(-1) = -12 \) So, we have: \[ (2 - 2\sqrt{3}i)^2 = 4 - 8\sqrt{3}i - 12 = -8 - 8\sqrt{3}i \] ### Step 2: Expand the right-hand side Next, we expand \( (\sqrt{3} + i)^4 \): Using the binomial theorem: \[ (\sqrt{3} + i)^4 = \sum_{k=0}^{4} \binom{4}{k} (\sqrt{3})^{4-k} (i)^k \] Calculating each term: - For \( k = 0 \): \( \binom{4}{0} (\sqrt{3})^4 (i)^0 = 9 \) - For \( k = 1 \): \( \binom{4}{1} (\sqrt{3})^3 (i)^1 = 4 \cdot 3\sqrt{3}i = 12\sqrt{3}i \) - For \( k = 2 \): \( \binom{4}{2} (\sqrt{3})^2 (i)^2 = 6 \cdot 3 \cdot (-1) = -18 \) - For \( k = 3 \): \( \binom{4}{3} (\sqrt{3})^1 (i)^3 = 4 \cdot \sqrt{3}(-i) = -4\sqrt{3}i \) - For \( k = 4 \): \( \binom{4}{4} (i)^4 = 1 \) Adding these together: \[ (\sqrt{3} + i)^4 = 9 + 12\sqrt{3}i - 18 - 4\sqrt{3}i + 1 = -8 + 8\sqrt{3}i \] ### Step 3: Set the two sides equal Now we set the two sides equal: \[ z(-8 - 8\sqrt{3}i) = i(-8 + 8\sqrt{3}i) \] ### Step 4: Simplify the right-hand side Calculating the right-hand side: \[ i(-8 + 8\sqrt{3}i) = -8i + 8\sqrt{3}(-1) = -8i - 8\sqrt{3} \] ### Step 5: Solve for \( z \) Now we have: \[ z(-8 - 8\sqrt{3}i) = -8 - 8i \] Thus, \[ z = \frac{-8 - 8i}{-8 - 8\sqrt{3}i} \] ### Step 6: Multiply by the conjugate To simplify \( z \), we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(-8 - 8i)(-8 + 8\sqrt{3}i)}{(-8 - 8\sqrt{3}i)(-8 + 8\sqrt{3}i)} \] Calculating the denominator: \[ (-8)^2 - (8\sqrt{3})^2 = 64 - 192 = -128 \] Calculating the numerator: \[ (-8)(-8) + (-8)(8\sqrt{3}i) + (-8i)(-8) + (-8i)(8\sqrt{3}i) = 64 - 64\sqrt{3}i + 64i - 64\sqrt{3}(-1) = 64 + 64\sqrt{3} + (64 - 64\sqrt{3})i \] Thus, \[ z = \frac{64 + 64\sqrt{3} + (64 - 64\sqrt{3})i}{-128} \] This simplifies to: \[ z = -\frac{1}{2} - \frac{1}{2}\sqrt{3} + \left(-\frac{1}{2} + \frac{1}{2}\sqrt{3}\right)i \] ### Step 7: Find the argument of \( z \) Now we can find the argument of \( z \): Let \( x = -\frac{1}{2} - \frac{1}{2}\sqrt{3} \) and \( y = -\frac{1}{2} + \frac{1}{2}\sqrt{3} \). The argument \( \arg(z) \) is given by: \[ \arg(z) = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-\frac{1}{2} + \frac{1}{2}\sqrt{3}}{-\frac{1}{2} - \frac{1}{2}\sqrt{3}}\right) \] This simplifies to: \[ \arg(z) = \tan^{-1}\left(\frac{1 - \sqrt{3}}{1 + \sqrt{3}}\right) \] Using the known values, we find that this corresponds to \( -\frac{\pi}{6} \) in the fourth quadrant. ### Final Answer Thus, the argument of \( z \) is: \[ \arg(z) = -\frac{\pi}{6} \]

To solve the equation \( z(2 - 2\sqrt{3}i)^2 = i(\sqrt{3} + i)^4 \) and find the argument of \( z \), we will follow these steps: ### Step 1: Expand the left-hand side We start by expanding \( (2 - 2\sqrt{3}i)^2 \): \[ (2 - 2\sqrt{3}i)^2 = 2^2 - 2 \cdot 2 \cdot 2\sqrt{3}i + (2\sqrt{3}i)^2 \] Calculating each term: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If z=i log(2-sqrt(3)) then cosz

If z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-i/2]^5 , then a. R e(z)=0 b. I m(z)=0 c. R e(z)>0 d. R e(z)>0,I m(z)<0

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

z is such that a r g ((z-3sqrt(3))/(z+3sqrt(3)))=pi/3 then locus z is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. Prove that for positive integers n(1) and n(2), the value of express...

    Text Solution

    |

  4. The value of abs(sqrt( 2i) - sqrt(2i)) is :

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  10. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  13. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  14. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  17. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  18. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  19. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  20. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  21. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |