Home
Class 12
MATHS
If (sqrt(3)-i)^n=2^n, n in I, the set of...

If `(sqrt(3)-i)^n=2^n, n in I`, the set of integers, then n is a multiple of

A

6

B

10

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( n \) such that \( (\sqrt{3} - i)^n = 2^n \), where \( n \) is an integer. ### Step-by-Step Solution: 1. **Express the complex number in polar form**: The complex number \( \sqrt{3} - i \) can be expressed in polar form. We first find its modulus: \[ r = | \sqrt{3} - i | = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2. \] Next, we find the argument (angle) \( \theta \): \[ \theta = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}. \] Therefore, we can write: \[ \sqrt{3} - i = 2 \left( \cos\left(-\frac{\pi}{6}\right) + i \sin\left(-\frac{\pi}{6}\right) \right). \] 2. **Raise to the power of \( n \)**: Now, we raise this expression to the power of \( n \): \[ (\sqrt{3} - i)^n = \left(2 \left( \cos\left(-\frac{\pi}{6}\right) + i \sin\left(-\frac{\pi}{6}\right)\right)\right)^n = 2^n \left( \cos\left(-\frac{n\pi}{6}\right) + i \sin\left(-\frac{n\pi}{6}\right) \right). \] 3. **Set the equation**: We have: \[ 2^n \left( \cos\left(-\frac{n\pi}{6}\right) + i \sin\left(-\frac{n\pi}{6}\right) \right) = 2^n. \] Dividing both sides by \( 2^n \) (assuming \( n \neq 0 \)): \[ \cos\left(-\frac{n\pi}{6}\right) + i \sin\left(-\frac{n\pi}{6}\right) = 1. \] 4. **Equate real and imaginary parts**: From the equation above, we can equate the real and imaginary parts: - Real part: \( \cos\left(-\frac{n\pi}{6}\right) = 1 \) - Imaginary part: \( \sin\left(-\frac{n\pi}{6}\right) = 0 \) 5. **Solve for \( n \)**: - The equation \( \cos\left(-\frac{n\pi}{6}\right) = 1 \) implies: \[ -\frac{n\pi}{6} = 2k\pi \quad \text{for some integer } k \implies n = -12k. \] - The equation \( \sin\left(-\frac{n\pi}{6}\right) = 0 \) implies: \[ -\frac{n\pi}{6} = m\pi \quad \text{for some integer } m \implies n = -6m. \] 6. **Find common multiples**: The values of \( n \) must satisfy both conditions. The least common multiple of \( 12 \) and \( 6 \) is \( 12 \). Thus, \( n \) must be a multiple of \( 12 \). ### Final Answer: Thus, \( n \) is a multiple of \( 12 \).

To solve the problem, we need to determine the values of \( n \) such that \( (\sqrt{3} - i)^n = 2^n \), where \( n \) is an integer. ### Step-by-Step Solution: 1. **Express the complex number in polar form**: The complex number \( \sqrt{3} - i \) can be expressed in polar form. We first find its modulus: \[ r = | \sqrt{3} - i | = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2. ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Show that ((-1+sqrt(3)i)/2)^n+((-1-sqrt(3i))/2)^n is equal to 2 when n is a multiple of 3 and is equal to -1 when n is any other positive integer.

If (9 + 4 sqrt(5))^(n) = I + f , n and I being positive integers and f is a proper fraction, show that (I-1 ) f + f^(2) is an even integer.

If n = (sqrt2 +1)^6 . Then the integer just greater than n is

If (2+sqrt(3))^n=I+f, where I and n are positive integers and 0lt f lt1 , show that I is an odd integer and (1-f)(1+f) =1

If 1;w;w^2 are cube root of unity and n is a positive integer;then 1+w^n+w^(2n) = {3; When n is multiple of 3; 0; when n is not a multiple of 3

If omega is a cube root of unity and n is a positive integer which is not a multiple of 3, then show that (1 + omega^(n) + omega^(2n))= 0

(-i)^(4n+3) , where n Is a positive integer.

If (4+sqrt(15))^n=I+f, where n is an odd natural number, I is an integer and ,then a. I is an odd integer b. I is an even integer c. (I+f)(1-f)=1 d. 1-f=(4-sqrt(15))^n

If (5 + 2 sqrt(6))^(n) = I + f , where I in N, n in N and 0 le f le 1, then I equals

Let P(n) :n^(2) lt 2^(n), n gt 1 , then the smallest positive integer for which P(n) is true? (i) 2 (ii) 3 (iii) 4 (iv) 5

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. The smallest positive integral value of n for which (1+sqrt3i)^(n/2) i...

    Text Solution

    |

  2. The least positive integeral value of n for which (sqrt(3)+i)^(n)=(sqr...

    Text Solution

    |

  3. If (sqrt(3)-i)^n=2^n, n in I, the set of integers, then n is a multipl...

    Text Solution

    |

  4. If (1 + i) = (1 - i) overline (z) then z is :

    Text Solution

    |

  5. Let z=(costheta+isintheta)/(costheta-isintheta), pi/4 lt theta lt pi/...

    Text Solution

    |

  6. If arg(z) lt 0, then find arg(-z) -arg(z).

    Text Solution

    |

  7. The value of {sin(logi^i)}^3+{cos(logi^i)}^3, is

    Text Solution

    |

  8. If z=a+ib satisfies "arg"(z-1)="arg"(z+3i), then (a-1):b=

    Text Solution

    |

  9. If the area of the triangle on the complex plane formed by the points ...

    Text Solution

    |

  10. If the area of the triangle on the complex plane formed by complex num...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If x^(2)-x=1=0 C sum(n=1) ^(5) (x^(n) + 1/x^(n))^(2) is :

    Text Solution

    |

  13. The value of alpha^(-n)+alpha^(-2n), n in N and alpha is a non-real cu...

    Text Solution

    |

  14. If a is a non-real fourth root of unity, then the value of alpha^(4n-1...

    Text Solution

    |

  15. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  16. If omega is an imaginary cube root of unity, then show that (1-omega)(...

    Text Solution

    |

  17. If alpha is a non-real fifth root of unity, then the value of 3^(|1+a...

    Text Solution

    |

  18. If Zr=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z1z2z3z4z5 is...

    Text Solution

    |

  19. z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0, then |z| is...

    Text Solution

    |

  20. if (5z2)/(7z1) is purely imaginary number then |(2z1+3z2)/(2z1-3z2) |...

    Text Solution

    |