Home
Class 12
MATHS
If z=a+ib satisfies "arg"(z-1)="arg"(z+3...

If `z=a+ib` satisfies `"arg"(z-1)="arg"(z+3i)`, then `(a-1):b=`

A

`2:1`

B

`1:3`

C

`-1:3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the condition given by the equality of arguments. The problem states that if \( z = a + ib \), then \( \arg(z - 1) = \arg(z + 3i) \). ### Step-by-Step Solution: 1. **Express the complex numbers**: - We have \( z = a + ib \). - Therefore, \( z - 1 = (a - 1) + ib \) and \( z + 3i = a + i(b + 3) \). 2. **Set up the argument equality**: - According to the problem, we have: \[ \arg(z - 1) = \arg(z + 3i) \] - This translates to: \[ \arg((a - 1) + ib) = \arg(a + i(b + 3)) \] 3. **Use the definition of argument**: - The argument of a complex number \( x + iy \) is given by \( \tan^{-1}(\frac{y}{x}) \). - Therefore: \[ \arg((a - 1) + ib) = \tan^{-1}\left(\frac{b}{a - 1}\right) \] \[ \arg(a + i(b + 3)) = \tan^{-1}\left(\frac{b + 3}{a}\right) \] 4. **Set the arguments equal**: - We set the two expressions equal: \[ \tan^{-1}\left(\frac{b}{a - 1}\right) = \tan^{-1}\left(\frac{b + 3}{a}\right) \] 5. **Eliminate the tangent function**: - Since the tangent function is one-to-one in the range of \( \tan^{-1} \), we can equate the arguments: \[ \frac{b}{a - 1} = \frac{b + 3}{a} \] 6. **Cross-multiply to eliminate the fractions**: - Cross-multiplying gives: \[ b \cdot a = (b + 3)(a - 1) \] 7. **Expand the right-hand side**: - Expanding the right-hand side: \[ ba = ba - b + 3a - 3 \] 8. **Simplify the equation**: - Cancel \( ba \) from both sides: \[ 0 = -b + 3a - 3 \] - Rearranging gives: \[ 3a - b - 3 = 0 \] 9. **Express \( b \) in terms of \( a \)**: - Rearranging gives: \[ b = 3a - 3 \] 10. **Find the ratio \( (a - 1) : b \)**: - Substitute \( b \) into the ratio: \[ a - 1 : b = a - 1 : (3a - 3) \] - This can be simplified: \[ = a - 1 : 3(a - 1) \] - Thus, the ratio simplifies to: \[ (a - 1) : b = 1 : 3 \] ### Final Answer: \[ (a - 1) : b = 1 : 3 \]

To solve the problem, we need to analyze the condition given by the equality of arguments. The problem states that if \( z = a + ib \), then \( \arg(z - 1) = \arg(z + 3i) \). ### Step-by-Step Solution: 1. **Express the complex numbers**: - We have \( z = a + ib \). - Therefore, \( z - 1 = (a - 1) + ib \) and \( z + 3i = a + i(b + 3) \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If arg(z-1)=arg(z+3i) , then find (x-1):y , where z=x+iy .

If arg(z-1)=arg(z+2i) , then find (x-1):y , where z=x+iy

z=x+iy satisfies arg(z+2)=arg(z+i) then (A) x+2y+1=0 (B) x+2y+2=0 (C) x-2y+1=0 (D) x-2y-2=0

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

If arg z = pi/4 ,then

If arg(z) lt 0, then find arg(-z) -arg(z) .

Find the locus of the complex number z=x+iy , satisfying relations arg(z-1)=(pi)/(4) and |z-2-3i|=2 .

Two complex numbers z_1a n dz_2 have relation R such that z_1Rz_2, arg(z_1)="arg"( z _2) then R is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If arg(z) lt 0, then find arg(-z) -arg(z).

    Text Solution

    |

  2. The value of {sin(logi^i)}^3+{cos(logi^i)}^3, is

    Text Solution

    |

  3. If z=a+ib satisfies "arg"(z-1)="arg"(z+3i), then (a-1):b=

    Text Solution

    |

  4. If the area of the triangle on the complex plane formed by the points ...

    Text Solution

    |

  5. If the area of the triangle on the complex plane formed by complex num...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If x^(2)-x=1=0 C sum(n=1) ^(5) (x^(n) + 1/x^(n))^(2) is :

    Text Solution

    |

  8. The value of alpha^(-n)+alpha^(-2n), n in N and alpha is a non-real cu...

    Text Solution

    |

  9. If a is a non-real fourth root of unity, then the value of alpha^(4n-1...

    Text Solution

    |

  10. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  11. If omega is an imaginary cube root of unity, then show that (1-omega)(...

    Text Solution

    |

  12. If alpha is a non-real fifth root of unity, then the value of 3^(|1+a...

    Text Solution

    |

  13. If Zr=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z1z2z3z4z5 is...

    Text Solution

    |

  14. z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0, then |z| is...

    Text Solution

    |

  15. if (5z2)/(7z1) is purely imaginary number then |(2z1+3z2)/(2z1-3z2) |...

    Text Solution

    |

  16. The locus of point z satsifying Re((1)/(2)) = k, where k is a nonz...

    Text Solution

    |

  17. If z lies on the circle I z l = 1, then 2/z lies on

    Text Solution

    |

  18. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  19. If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3...

    Text Solution

    |

  20. If |z^2-1|=|z|^2+1, then z lies on (a) The Real axis (b)The imaginary...

    Text Solution

    |