Home
Class 12
MATHS
The value of alpha^(-n)+alpha^(-2n), n i...

The value of `alpha^(-n)+alpha^(-2n), n in N` and `alpha` is a non-real cube root of unity, is

A

3, if n is a multiple of 3

B

`-1`, if n is a mulitiple of 3

C

2, if n is a multiple of 3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \alpha^{-n} + \alpha^{-2n} \) where \( \alpha \) is a non-real cube root of unity and \( n \in \mathbb{N} \), we can follow these steps: ### Step 1: Define the Non-Real Cube Roots of Unity The non-real cube roots of unity are given by: \[ \alpha = \omega = e^{2\pi i / 3} \quad \text{and} \quad \alpha^2 = \omega^2 = e^{-2\pi i / 3} \] where \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ### Step 2: Rewrite the Expression We need to find: \[ \alpha^{-n} + \alpha^{-2n} \] Since \( \alpha = \omega \), we can rewrite this as: \[ \omega^{-n} + \omega^{-2n} = \frac{1}{\omega^n} + \frac{1}{\omega^{2n}} \] ### Step 3: Simplify the Expression Using the property of cube roots of unity, we know: \[ \frac{1}{\omega^n} = \omega^{3-k} \quad \text{if } n = 3k + r \text{ where } r = 0, 1, 2 \] Thus, we can express: \[ \frac{1}{\omega^n} = \omega^{3k} \cdot \omega^{-r} = \omega^{-r} \quad \text{(since } \omega^3 = 1\text{)} \] Similarly, \[ \frac{1}{\omega^{2n}} = \omega^{-2r} \] ### Step 4: Evaluate Based on the Value of \( n \) Now, we evaluate \( \omega^{-r} + \omega^{-2r} \) based on the value of \( r \): 1. **If \( n = 3k \)** (i.e., \( r = 0 \)): \[ \omega^{-0} + \omega^{-0} = 1 + 1 = 2 \] 2. **If \( n = 3k + 1 \)** (i.e., \( r = 1 \)): \[ \omega^{-1} + \omega^{-2} = \omega^2 + \omega = -1 \quad \text{(since } 1 + \omega + \omega^2 = 0\text{)} \] 3. **If \( n = 3k + 2 \)** (i.e., \( r = 2 \)): \[ \omega^{-2} + \omega^{-1} = \omega + \omega^2 = -1 \] ### Final Result Thus, we conclude: - If \( n \) is a multiple of 3, \( \alpha^{-n} + \alpha^{-2n} = 2 \). - If \( n \) is not a multiple of 3, \( \alpha^{-n} + \alpha^{-2n} = -1 \). ### Summary The value of \( \alpha^{-n} + \alpha^{-2n} \) is: \[ \begin{cases} 2 & \text{if } n \text{ is a multiple of } 3 \\ -1 & \text{if } n \text{ is not a multiple of } 3 \end{cases} \]

To solve the problem of finding the value of \( \alpha^{-n} + \alpha^{-2n} \) where \( \alpha \) is a non-real cube root of unity and \( n \in \mathbb{N} \), we can follow these steps: ### Step 1: Define the Non-Real Cube Roots of Unity The non-real cube roots of unity are given by: \[ \alpha = \omega = e^{2\pi i / 3} \quad \text{and} \quad \alpha^2 = \omega^2 = e^{-2\pi i / 3} \] where \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If 1,alpha_1,alpha_2,alpha_3,.........,alpha_(3n) be the roots of the eqution x^(3n+1) - 1 =0 , and w be an imaginary cube root of unity, then ((w^2-alpha_1)(w^2-alpha_2)....(w^(3n)-alpha_(3n))) /((w-alpha_1)(w2-alpha)....(w-alpha_(3n)))

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

Let A be a nxxn matrix such that A ^(n) = alpha A, where alpha is a real number different from 1 and - 1. The matrix A + I_(n) is

Let log_3^N = alpha_1 + beta_1 , log_5^N = alpha_2 + beta_2 , log_7^N = alpha_3 + beta_3 Largest integral value of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (A)342. (D) 242 (C) 243 (B) 343 342 17 Difference of largest and smallest integral values of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (D) 99 (C) 98 (B) 100 (A) 97

If alpha !=1 is an n^(th) root of unity and n in N such thatfirst three terms in the expansion of (alpha + x)^n are 1, alpha and (n - 1)/(2n) bar a^2 , then the value of x, is

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

The maximum value of (cosalpha_(1))(cos alpha_(2))...(cosalpha_(n)), under the restrictions 0lealpha_(1),alpha_(2)...,alpha_(n)le(pi)/(2) and (cotalpha_(1))(cotalpha_(2))......(cotalpha_(n))=1 is

If A_alpha=[cosalphasinalpha-sinalphacosalpha] , then prove that (A_alpha)^n=[cos n\ alphasinn\ alpha-sinn\ alpha cos n\ alpha] for every positive integer n .

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Difference of largest and smallest values of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. about to only mathematics

    Text Solution

    |

  2. If x^(2)-x=1=0 C sum(n=1) ^(5) (x^(n) + 1/x^(n))^(2) is :

    Text Solution

    |

  3. The value of alpha^(-n)+alpha^(-2n), n in N and alpha is a non-real cu...

    Text Solution

    |

  4. If a is a non-real fourth root of unity, then the value of alpha^(4n-1...

    Text Solution

    |

  5. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  6. If omega is an imaginary cube root of unity, then show that (1-omega)(...

    Text Solution

    |

  7. If alpha is a non-real fifth root of unity, then the value of 3^(|1+a...

    Text Solution

    |

  8. If Zr=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z1z2z3z4z5 is...

    Text Solution

    |

  9. z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0, then |z| is...

    Text Solution

    |

  10. if (5z2)/(7z1) is purely imaginary number then |(2z1+3z2)/(2z1-3z2) |...

    Text Solution

    |

  11. The locus of point z satsifying Re((1)/(2)) = k, where k is a nonz...

    Text Solution

    |

  12. If z lies on the circle I z l = 1, then 2/z lies on

    Text Solution

    |

  13. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  14. If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3...

    Text Solution

    |

  15. If |z^2-1|=|z|^2+1, then z lies on (a) The Real axis (b)The imaginary...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. If |z|=k and omega=(z-k)/(z+k), then Re(omega)=

    Text Solution

    |

  18. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  19. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  20. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |