Home
Class 12
MATHS
If 1,alpha,alpha^(2),……….,alpha^(n-1) ar...

If `1,alpha,alpha^(2),……….,alpha^(n-1)` are `n^(th)` root of unity, the value of `(3-alpha)(3-alpha^(2))(3-alpha^(3))……(3-alpha^(n-1))`, is

A

n

B

0

C

`(3n-1)/2`

D

`(3n+1)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((3 - \alpha)(3 - \alpha^2)(3 - \alpha^3) \ldots (3 - \alpha^{n-1})\), where \(1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\) are the \(n^{th}\) roots of unity. ### Step-by-Step Solution: 1. **Understanding the Roots of Unity**: The \(n^{th}\) roots of unity are given by the formula: \[ \alpha_k = e^{2\pi i k/n} \quad \text{for } k = 0, 1, 2, \ldots, n-1 \] Here, \(1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\) correspond to these roots. 2. **Using the Polynomial Representation**: The \(n^{th}\) roots of unity can be represented by the polynomial: \[ P(x) = x^n - 1 = (x - 1)(x - \alpha)(x - \alpha^2) \ldots (x - \alpha^{n-1}) \] 3. **Finding the Expression**: We want to evaluate: \[ (3 - \alpha)(3 - \alpha^2)(3 - \alpha^3) \ldots (3 - \alpha^{n-1}) \] This can be expressed as: \[ P(3) = 3^n - 1 \] 4. **Relating the Expression to the Polynomial**: We can rewrite our expression as: \[ P(3) = (3 - 1)(3 - \alpha)(3 - \alpha^2) \ldots (3 - \alpha^{n-1}) = 2 \cdot (3 - \alpha)(3 - \alpha^2) \ldots (3 - \alpha^{n-1}) \] 5. **Solving for the Desired Product**: Thus, we have: \[ (3 - \alpha)(3 - \alpha^2) \ldots (3 - \alpha^{n-1}) = \frac{P(3)}{2} \] Substituting \(P(3)\): \[ (3 - \alpha)(3 - \alpha^2) \ldots (3 - \alpha^{n-1}) = \frac{3^n - 1}{2} \] ### Final Answer: The value of \((3 - \alpha)(3 - \alpha^2)(3 - \alpha^3) \ldots (3 - \alpha^{n-1})\) is: \[ \frac{3^n - 1}{2} \]

To solve the problem, we need to find the value of the expression \((3 - \alpha)(3 - \alpha^2)(3 - \alpha^3) \ldots (3 - \alpha^{n-1})\), where \(1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\) are the \(n^{th}\) roots of unity. ### Step-by-Step Solution: 1. **Understanding the Roots of Unity**: The \(n^{th}\) roots of unity are given by the formula: \[ \alpha_k = e^{2\pi i k/n} \quad \text{for } k = 0, 1, 2, \ldots, n-1 ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha,alpha^2,alpha^3,......,alpha^(n-1) are n n^(th) roots of unity, then find the value of (2011-alpha)(2011-alpha^2)....(2011-alpha^(n-1))

If alpha is a non-real fifth root of unity, then the value of 3^(|1+alpha+alpha^(2),alpha^(-2)-alpha^(-1)| , is

If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity, then sum_(i=1)^(n-1)(1)/(2-alpha^(i)) is equal to:

If nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1) are nth roots of unity then the sum sum_(1leiltjlen-1)alpha_(i)alpha(j)=

If 1,alpha_1,alpha_2, ,alpha_(n-1) are the n t h roots of unity, prove that (1-alpha_1)(1-alpha_2)(1-alpha_(n-1))=ndot Deduce that sinpi/nsin(2pi)/n sin((n-1)pi)/n=n/(2^(n-1))

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If alpha is an n^(th) roots of unity, then 1+2alpha+3alpha^(2)+……..+nalpha^(n-1) equals

If a is a non-real fourth root of unity, then the value of alpha^(4n-1)+alpha^(4n-2)+alpha^(4n-3), n in N is

If alpha is an imaginary fifth root of unity, then log_(2)|1+alpha+alpha^(2)+alpha^(3)-1/alpha|=

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. The value of alpha^(-n)+alpha^(-2n), n in N and alpha is a non-real cu...

    Text Solution

    |

  2. If a is a non-real fourth root of unity, then the value of alpha^(4n-1...

    Text Solution

    |

  3. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  4. If omega is an imaginary cube root of unity, then show that (1-omega)(...

    Text Solution

    |

  5. If alpha is a non-real fifth root of unity, then the value of 3^(|1+a...

    Text Solution

    |

  6. If Zr=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z1z2z3z4z5 is...

    Text Solution

    |

  7. z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0, then |z| is...

    Text Solution

    |

  8. if (5z2)/(7z1) is purely imaginary number then |(2z1+3z2)/(2z1-3z2) |...

    Text Solution

    |

  9. The locus of point z satsifying Re((1)/(2)) = k, where k is a nonz...

    Text Solution

    |

  10. If z lies on the circle I z l = 1, then 2/z lies on

    Text Solution

    |

  11. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  12. If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3...

    Text Solution

    |

  13. If |z^2-1|=|z|^2+1, then z lies on (a) The Real axis (b)The imaginary...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If |z|=k and omega=(z-k)/(z+k), then Re(omega)=

    Text Solution

    |

  16. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  17. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  18. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  19. The equation |z-1|^(2)+|z+1|^(2)=2, represent

    Text Solution

    |

  20. The points representing the complex numbers z for which |z+4|^(2)-|z-4...

    Text Solution

    |