Home
Class 12
MATHS
If Zr=cos((2rpi)/5)+isin((2rpi)/5),r=0,1...

If `Z_r=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,...` then `z_1z_2z_3z_4z_5` is equal to

A

`-1`

B

0

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( z_1 z_2 z_3 z_4 z_5 \) where \[ Z_r = \cos\left(\frac{2r\pi}{5}\right) + i \sin\left(\frac{2r\pi}{5}\right) \] for \( r = 0, 1, 2, 3, 4 \). ### Step-by-Step Solution: 1. **Identify the values of \( Z_r \)**: - For \( r = 0 \): \[ Z_0 = \cos(0) + i \sin(0) = 1 + 0i = 1 \] - For \( r = 1 \): \[ Z_1 = \cos\left(\frac{2\pi}{5}\right) + i \sin\left(\frac{2\pi}{5}\right) = e^{i\frac{2\pi}{5}} \] - For \( r = 2 \): \[ Z_2 = \cos\left(\frac{4\pi}{5}\right) + i \sin\left(\frac{4\pi}{5}\right) = e^{i\frac{4\pi}{5}} \] - For \( r = 3 \): \[ Z_3 = \cos\left(\frac{6\pi}{5}\right) + i \sin\left(\frac{6\pi}{5}\right) = e^{i\frac{6\pi}{5}} \] - For \( r = 4 \): \[ Z_4 = \cos\left(\frac{8\pi}{5}\right) + i \sin\left(\frac{8\pi}{5}\right) = e^{i\frac{8\pi}{5}} \] 2. **Write the product \( Z_1 Z_2 Z_3 Z_4 Z_5 \)**: \[ Z_1 Z_2 Z_3 Z_4 Z_5 = Z_0 Z_1 Z_2 Z_3 Z_4 = 1 \cdot e^{i\frac{2\pi}{5}} \cdot e^{i\frac{4\pi}{5}} \cdot e^{i\frac{6\pi}{5}} \cdot e^{i\frac{8\pi}{5}} \] 3. **Combine the exponents**: \[ Z_1 Z_2 Z_3 Z_4 Z_5 = e^{i\left(\frac{2\pi}{5} + \frac{4\pi}{5} + \frac{6\pi}{5} + \frac{8\pi}{5}\right)} \] 4. **Calculate the sum of the angles**: \[ \frac{2\pi}{5} + \frac{4\pi}{5} + \frac{6\pi}{5} + \frac{8\pi}{5} = \frac{20\pi}{5} = 4\pi \] 5. **Substitute back into the exponential**: \[ Z_1 Z_2 Z_3 Z_4 Z_5 = e^{i(4\pi)} \] 6. **Evaluate \( e^{i(4\pi)} \)**: \[ e^{i(4\pi)} = \cos(4\pi) + i \sin(4\pi) = 1 + 0i = 1 \] ### Final Answer: \[ Z_1 Z_2 Z_3 Z_4 Z_5 = 1 \]

To solve the problem, we need to find the product \( z_1 z_2 z_3 z_4 z_5 \) where \[ Z_r = \cos\left(\frac{2r\pi}{5}\right) + i \sin\left(\frac{2r\pi}{5}\right) \] for \( r = 0, 1, 2, 3, 4 \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z_r=cos(pi/(3^r))+isin(pi/(3^r)),r=1,2,3, , prove that z_1z_2z_3 z_oo=idot

If z=3-4i then z^4-3z^3+3z^2+99z-95 is equal to

if (5z_2)/(7z_1) is purely imaginary number then |(2z_1+3z_2)/(2z_1-3z_2) | is equal to

If |z_1=1,|z_2|=2,|z_3|=3 and |z_1+z_2+z_3|=1, then |9z_1z_2+4z_3z_1+z_2z_3| is equal to

If z_(r)=cos((ralpha)/(n^(2)))+isin((ralpha)/(n^(2))),"where "r=1,2,3,...,nandi=sqrt(-1),"then. "lim_(n to oo) z_(1)z_(2)z_(3)...z_(n) is equal to

If the fourth roots of unity are z_1, z_2, z_3, z_4 and z_1^2+z_2^2+z_3^2+z_4^2 is equal to :

Let f(z) = |(5,3,8),(2,z,1),(1,2,z)| then f(5) is equal to

If (2z_(1))/(3z_(2)) is purely imaginary number, then |(z_(1)-z_(2))/(z_(1)+z_(2))|^(4) is equal to

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If omega is an imaginary cube root of unity, then show that (1-omega)(...

    Text Solution

    |

  2. If alpha is a non-real fifth root of unity, then the value of 3^(|1+a...

    Text Solution

    |

  3. If Zr=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z1z2z3z4z5 is...

    Text Solution

    |

  4. z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0, then |z| is...

    Text Solution

    |

  5. if (5z2)/(7z1) is purely imaginary number then |(2z1+3z2)/(2z1-3z2) |...

    Text Solution

    |

  6. The locus of point z satsifying Re((1)/(2)) = k, where k is a nonz...

    Text Solution

    |

  7. If z lies on the circle I z l = 1, then 2/z lies on

    Text Solution

    |

  8. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  9. If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3...

    Text Solution

    |

  10. If |z^2-1|=|z|^2+1, then z lies on (a) The Real axis (b)The imaginary...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If |z|=k and omega=(z-k)/(z+k), then Re(omega)=

    Text Solution

    |

  13. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  14. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  15. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  16. The equation |z-1|^(2)+|z+1|^(2)=2, represent

    Text Solution

    |

  17. The points representing the complex numbers z for which |z+4|^(2)-|z-4...

    Text Solution

    |

  18. If |z+barz|=|z-barz|, then value of locus of z is

    Text Solution

    |

  19. If |z+barz|+|z-barz|=2, then z lies on

    Text Solution

    |

  20. The closest distance of the origin from a curve given as Abarz+barAz+A...

    Text Solution

    |