Home
Class 12
MATHS
If z(1),z(2),……………,z(n) lie on the circl...

If `z_(1),z_(2),……………,z_(n)` lie on the circle `|z|=R`, then
`|z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)|` is equal to

A

nR

B

`-nR`

C

0

D

n

Text Solution

Verified by Experts

The correct Answer is:
C

Since, `z_(1),z-(2),z_(3),…………,z_(n)` lie on the circle |z|=R.
`rArr |z_(i)|^(2)=R^(2)`
`rArr z_(i)barz_(i)=R^(2)` for i=1,2,……..n
`rArr 1/z_(i)=barz_(i)/R^(2)` for i=1,2,……….n
Now, `|z_(1)+z_(2)+……….+z_(3)|-R^(2)` for i=1,2,…………..n
Now,
`|z_(1)+z_(2)+.............+z_(2)|-R^(2)|barz_(1)/R^(2)+barz_(2)/R^(2)+...........+barz_(n)/R^(2)|`
`rArr |z_(1)+z_(2)+...............+z_(z)|-|barz_(1)+barz_(2)+............+barz_(n)|`
`rArr |z_(1)+z_(2)+...........+z_(n)|-|bar(z_(1)+z_(2)+.....+z_(n))|`
`=|z_(1)+z_(2)+.............+z_(z)|-|z_(1)+z_(2)+.......+z_(n)|=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Statement-1, If z_(1),z_(2),z_(3),……………….,z_(n) are uni-modular complex numbers, then |z_(1)+z+(2)+…………+z_(n)|=|1/z_(1)+1/z_(2)+…………..+1/z_(n)| Statement-2: For any complex number z, zbarz=|z|^(2)

if z_(1),z_(2),z_(3),…..z_(n) are complex numbers such that |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1 Then show that |z_(1) +z_(2) +z_(3) +……+z_(n)|=1

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If |z_(1)+z_(2)|^(2) = |z_(1)|^(2) +|z_(2)|^(2) " the " 6/pi amp (z_(1)/z_(2)) is equal to ……

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

If the tangents at z_(1) , z_(2) on the circle |z-z_(0)|=r intersect at z_(3) , then ((z_(3)-z_(1))(z_(0)-z_(2)))/((z_(0)-z_(1))(z_(3)-z_(2))) equals

Prove that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)=2|z_(1)|^(2) + 2|z_(2)|^(2)

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)= 2(|z_(1)|^(2) + |z_(2)|^(2))

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If z(1) and z(2) are two of the 8^(th) roots of unity such that arg(z(...

    Text Solution

    |

  2. Find the number of roots of the equation z^(15) = 1 satisfying |arg ...

    Text Solution

    |

  3. If z(1),z(2),……………,z(n) lie on the circle |z|=R, then |z(1)+z(2)+………...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The complex numbers z1, z2 and z3 satisfying (z1-z3)/(z2-z3) =(1- i sq...

    Text Solution

    |

  6. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. Let z(1)and z(2)be two complex numbers represented by points on circle...

    Text Solution

    |

  9. If z lies on unit circle with center at the origin, then (1+z)/(1+barz...

    Text Solution

    |

  10. If |z1-1|<1, |z2-2|<2,|z3-3|<3 then |z1+z2+z3|

    Text Solution

    |

  11. Complex numbers z(1) and z(2) lie on the rays arg(z1)=theta and arg(z1...

    Text Solution

    |

  12. If z is a complex number satisfying |z|^(2)-|z|-2 lt 0, then the value...

    Text Solution

    |

  13. if |z-i| le 2 and z1=5+3i, then the maximum value of |iz+z1| is :

    Text Solution

    |

  14. If |z|= "max"{|z-2|,|z+2|}, then

    Text Solution

    |

  15. if |(z-6)/(z+8)|=1, then the value of x in R, where z=x+i|{:(-3,2i,2+i...

    Text Solution

    |

  16. If |z-1|+|z+3|<=8, then the range of values of |z-4| is

    Text Solution

    |

  17. The equation |z-i|+|z+i|=k, k gt 0 can represent an ellipse, if k=

    Text Solution

    |

  18. Find the range of K for which the equation |z+i| - |z-i | = K represen...

    Text Solution

    |

  19. If |z+3i|+|z-i|=8, then the locus of z, in the Argand plane, is

    Text Solution

    |

  20. , a point 'z' is equidistant from three distinct points z(1),z(2) and ...

    Text Solution

    |