Home
Class 12
MATHS
Let omega=-1/2+i(sqrt(3))/2dot Then the ...

Let `omega=-1/2+i(sqrt(3))/2dot` Then the value of the determinant `|1 1 1 1-1-omega^2omega^2 1omega^2omega^4|` is `3omega` b. `3omega(omega-1)` c. `3omega^2` d. `3omega(1-omega)`

A

`3omega`

B

`3omega(omega-1)`

C

`3omega^(2)`

D

`3omega(1-omega)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`Delta=|{:(1,1,1),(1,-1-omega^(2),omega^(2)),(1,omega^(2),omega^(4))|`
`rArr Delta=|{:(1,0,0),(1,-2-omega^(2),omega^(2)-1),(1,omega^(2)-1,omega-1):}|` Applying `C_(2) rArr C_(2)-C_(1)`,
`rArr Delta=-(2omega+omega^(3)-2-omega^(2))-(omega^(4)-2omega^(2)+1)`
`rArr Delta=-(2omega-1-omega^(2))-(omega-2omega^(2)+1)`
`rArr Delta=-(2omega+omega)-(-3omega^(2))=-3omega+3omega^(2)=3omega(omega-1)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1-omega^2,-omega^2],[1, omega^2,omega^4]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a complex cube root of unity then (1-omega+omega^2)(1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. about to only mathematics

    Text Solution

    |

  2. The complex numbers z1, z2 and z3 satisfying (z1-z3)/(z2-z3) =(1- i sq...

    Text Solution

    |

  3. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Let z(1)and z(2)be two complex numbers represented by points on circle...

    Text Solution

    |

  6. If z lies on unit circle with center at the origin, then (1+z)/(1+barz...

    Text Solution

    |

  7. If |z1-1|<1, |z2-2|<2,|z3-3|<3 then |z1+z2+z3|

    Text Solution

    |

  8. Complex numbers z(1) and z(2) lie on the rays arg(z1)=theta and arg(z1...

    Text Solution

    |

  9. If z is a complex number satisfying |z|^(2)-|z|-2 lt 0, then the value...

    Text Solution

    |

  10. if |z-i| le 2 and z1=5+3i, then the maximum value of |iz+z1| is :

    Text Solution

    |

  11. If |z|= "max"{|z-2|,|z+2|}, then

    Text Solution

    |

  12. if |(z-6)/(z+8)|=1, then the value of x in R, where z=x+i|{:(-3,2i,2+i...

    Text Solution

    |

  13. If |z-1|+|z+3|<=8, then the range of values of |z-4| is

    Text Solution

    |

  14. The equation |z-i|+|z+i|=k, k gt 0 can represent an ellipse, if k=

    Text Solution

    |

  15. Find the range of K for which the equation |z+i| - |z-i | = K represen...

    Text Solution

    |

  16. If |z+3i|+|z-i|=8, then the locus of z, in the Argand plane, is

    Text Solution

    |

  17. , a point 'z' is equidistant from three distinct points z(1),z(2) and ...

    Text Solution

    |

  18. Let P(e^(itheta1)), Q(e^(itheta2)) and R(e^(itheta3)) be the vertices...

    Text Solution

    |

  19. If A(z(1)),B(z(2)), C(z(3)) are the vertices of an equilateral triangl...

    Text Solution

    |

  20. If A (z1), B (z2) and C (z3) are three points in the argand plane whe...

    Text Solution

    |