Home
Class 12
MATHS
If |z|= "max"{|z-2|,|z+2|}, then...

If `|z|= "max"{|z-2|,|z+2|}`, then

A

`|z+barz|=2`

B

`z+barz=4`

C

`|z+barz|=1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( |z| = \max\{|z-2|, |z+2|\} \), we will analyze the two cases separately. ### Step 1: Understand the condition We need to find the values of \( z \) such that the modulus of \( z \) is equal to the maximum of the moduli \( |z-2| \) and \( |z+2| \). ### Step 2: Case 1: \( |z| = |z-2| \) Assuming \( |z| = |z-2| \): 1. We square both sides: \[ |z|^2 = |z-2|^2 \] This gives: \[ z \overline{z} = (z-2)(\overline{z}-2) \] 2. Expanding the right side: \[ z \overline{z} = z \overline{z} - 2z - 2\overline{z} + 4 \] 3. Rearranging terms: \[ 0 = -2z - 2\overline{z} + 4 \] Simplifying gives: \[ 2z + 2\overline{z} = 4 \quad \Rightarrow \quad z + \overline{z} = 2 \] 4. This implies: \[ \text{Re}(z) = 1 \] Thus, \( z \) can be expressed as: \[ z = 1 + yi \quad \text{for any real } y \] ### Step 3: Case 2: \( |z| = |z+2| \) Now assuming \( |z| = |z+2| \): 1. Again, we square both sides: \[ |z|^2 = |z+2|^2 \] This gives: \[ z \overline{z} = (z+2)(\overline{z}+2) \] 2. Expanding the right side: \[ z \overline{z} = z \overline{z} + 2z + 2\overline{z} + 4 \] 3. Rearranging terms: \[ 0 = 2z + 2\overline{z} + 4 \] Simplifying gives: \[ 2z + 2\overline{z} = -4 \quad \Rightarrow \quad z + \overline{z} = -2 \] 4. This implies: \[ \text{Re}(z) = -1 \] Thus, \( z \) can be expressed as: \[ z = -1 + yi \quad \text{for any real } y \] ### Step 4: Conclusion From both cases, we find that: - In Case 1, \( z = 1 + yi \) - In Case 2, \( z = -1 + yi \) Thus, the values of \( z \) satisfying the condition \( |z| = \max\{|z-2|, |z+2|\} \) are: \[ z = 1 + yi \quad \text{or} \quad z = -1 + yi \quad \text{for any real } y. \]

To solve the problem \( |z| = \max\{|z-2|, |z+2|\} \), we will analyze the two cases separately. ### Step 1: Understand the condition We need to find the values of \( z \) such that the modulus of \( z \) is equal to the maximum of the moduli \( |z-2| \) and \( |z+2| \). ### Step 2: Case 1: \( |z| = |z-2| \) Assuming \( |z| = |z-2| \): 1. We square both sides: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

I f|z|=max{|z-1|,|z+1|} , then

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

if |z_1+z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2) if |z_1-z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2)=pi

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If complex numbers z_(1)z_(2) and z_(3) are such that |z_(1)| = |z_(2)| = |z_(3)| , then prove that arg((z_(2))/(z_(1))) = arg ((z_(2) - z_(3))/(z_(1) - z_(3)))^(2) .

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If z is a complex number satisfying |z|^(2)-|z|-2 lt 0, then the value...

    Text Solution

    |

  2. if |z-i| le 2 and z1=5+3i, then the maximum value of |iz+z1| is :

    Text Solution

    |

  3. If |z|= "max"{|z-2|,|z+2|}, then

    Text Solution

    |

  4. if |(z-6)/(z+8)|=1, then the value of x in R, where z=x+i|{:(-3,2i,2+i...

    Text Solution

    |

  5. If |z-1|+|z+3|<=8, then the range of values of |z-4| is

    Text Solution

    |

  6. The equation |z-i|+|z+i|=k, k gt 0 can represent an ellipse, if k=

    Text Solution

    |

  7. Find the range of K for which the equation |z+i| - |z-i | = K represen...

    Text Solution

    |

  8. If |z+3i|+|z-i|=8, then the locus of z, in the Argand plane, is

    Text Solution

    |

  9. , a point 'z' is equidistant from three distinct points z(1),z(2) and ...

    Text Solution

    |

  10. Let P(e^(itheta1)), Q(e^(itheta2)) and R(e^(itheta3)) be the vertices...

    Text Solution

    |

  11. If A(z(1)),B(z(2)), C(z(3)) are the vertices of an equilateral triangl...

    Text Solution

    |

  12. If A (z1), B (z2) and C (z3) are three points in the argand plane whe...

    Text Solution

    |

  13. If a1,a2 ...an are nth roots of unity then1/(1-a1) +1/(1-a2)+1/(1-a3)....

    Text Solution

    |

  14. Let A(z(1)) and B(z(2)) be such that angleAOB=theta('O') being the ori...

    Text Solution

    |

  15. If one root of z^2 + (a + i)z+ b +ic =0 is real, where a, b, c in R , ...

    Text Solution

    |

  16. If A and B represent the complex numbers z(1) and z(2) such that |z(1)...

    Text Solution

    |

  17. If z1ne-z2 and |z1+z2|=|1/z1 + 1/z2| then :

    Text Solution

    |

  18. Let O, A, B be three collinear points such that OA.OB=1. If O and B re...

    Text Solution

    |

  19. If z(0),z(1) represent points P and Q on the circle |z-1|=1 taken in a...

    Text Solution

    |

  20. The center of a square ABCD is at the origin and point A is reprsented...

    Text Solution

    |