Home
Class 12
MATHS
If a1,a2 ...an are nth roots of unity th...

If `a_1,a_2 ...a_n` are nth roots of unity then`1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n)` is equal to

A

`(n-1)/2`

B

`n/2`

C

`(2^(n)-1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = \frac{1}{1 - a_1} + \frac{1}{1 - a_2} + \frac{1}{1 - a_3} + \ldots + \frac{1}{1 - a_n} \] where \( a_1, a_2, \ldots, a_n \) are the \( n \)th roots of unity. The \( n \)th roots of unity are given by: \[ a_k = e^{2\pi i k/n} \quad \text{for } k = 0, 1, 2, \ldots, n-1 \] ### Step 1: Rewrite the expression We can rewrite \( S \) as: \[ S = \sum_{k=0}^{n-1} \frac{1}{1 - a_k} \] ### Step 2: Find a common denominator The common denominator for the terms in \( S \) is: \[ \prod_{k=0}^{n-1} (1 - a_k) \] Thus, we can express \( S \) as: \[ S = \frac{\sum_{k=0}^{n-1} \prod_{j \neq k} (1 - a_j)}{\prod_{j=0}^{n-1} (1 - a_j)} \] ### Step 3: Evaluate the denominator The denominator \( \prod_{j=0}^{n-1} (1 - a_j) \) can be evaluated using the fact that \( a_j \) are the roots of the polynomial \( x^n - 1 = 0 \). Therefore, we can express this as: \[ \prod_{j=0}^{n-1} (1 - a_j) = P(1) \quad \text{where } P(x) = x^n - 1 \] Calculating \( P(1) \): \[ P(1) = 1^n - 1 = 0 \] This means that the product \( \prod_{j=0}^{n-1} (1 - a_j) \) is equal to \( n \) because: \[ P(x) = (x - 1)(x - a_1)(x - a_2) \ldots (x - a_{n-1}) \] ### Step 4: Evaluate the numerator Now we need to evaluate the numerator: \[ \sum_{k=0}^{n-1} \prod_{j \neq k} (1 - a_j) \] Using the fact that \( \prod_{j \neq k} (1 - a_j) \) is the polynomial evaluated at \( 1 \) excluding the term \( (1 - a_k) \): \[ \sum_{k=0}^{n-1} \prod_{j \neq k} (1 - a_j) = n \cdot \prod_{j=0}^{n-1} (1 - a_j) \] ### Step 5: Combine the results Thus, we have: \[ S = \frac{n \cdot \prod_{j=0}^{n-1} (1 - a_j)}{\prod_{j=0}^{n-1} (1 - a_j)} = n \] ### Final Result Thus, the final result is: \[ S = \frac{n(n-1)}{2} \]

To solve the problem, we need to evaluate the expression: \[ S = \frac{1}{1 - a_1} + \frac{1}{1 - a_2} + \frac{1}{1 - a_3} + \ldots + \frac{1}{1 - a_n} \] where \( a_1, a_2, \ldots, a_n \) are the \( n \)th roots of unity. The \( n \)th roots of unity are given by: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

If a_1,a_2,a_3,……a_n are in A.P. [1/(a_1a_n)+1/(a_2a_(n-1))+1/(a_3a_(n-2))+..+1/(a_na_1)]

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If roots of an equation x^n-1=0a r e1,a_1,a_2,..... a_(n-1), then the value of (1-a_1)(1-a_2)(1-a_3)(1-a_(n-1)) will be n b. n^2 c. n^n d. 0

If a_0, a_1 , a_2 …..a_n are binomial coefficients then (1 + a_1/a_0)(1 +a_2/a_1) …………….(1 + (a_n)/(a_(n-1)) ) =

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

Let a_1,a_2,.....,a_n be fixed real numbers and define a function f(x) = (x-a_1) (x-a_2).....(x-a_n) . What is (lim)_(x->a_1)f(x) ? For some a!=a_1,a_2,.....,a_n , compute (lim)_(x->a)f(x)

Let a_1,a_2,a_3 …. a_n be in A.P. If 1/(a_1a_n)+1/(a_2a_(n-1)) +… + 1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n) , then k is equal to :

If S=a_1+a_2+......+a_n,a_i in R^+ for i=1 to n, then prove that S/(S-a_1)+S/(S-a_2)+......+S/(S-a_n) ge n^2/(n-1), AA n ge 2

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If A(z(1)),B(z(2)), C(z(3)) are the vertices of an equilateral triangl...

    Text Solution

    |

  2. If A (z1), B (z2) and C (z3) are three points in the argand plane whe...

    Text Solution

    |

  3. If a1,a2 ...an are nth roots of unity then1/(1-a1) +1/(1-a2)+1/(1-a3)....

    Text Solution

    |

  4. Let A(z(1)) and B(z(2)) be such that angleAOB=theta('O') being the ori...

    Text Solution

    |

  5. If one root of z^2 + (a + i)z+ b +ic =0 is real, where a, b, c in R , ...

    Text Solution

    |

  6. If A and B represent the complex numbers z(1) and z(2) such that |z(1)...

    Text Solution

    |

  7. If z1ne-z2 and |z1+z2|=|1/z1 + 1/z2| then :

    Text Solution

    |

  8. Let O, A, B be three collinear points such that OA.OB=1. If O and B re...

    Text Solution

    |

  9. If z(0),z(1) represent points P and Q on the circle |z-1|=1 taken in a...

    Text Solution

    |

  10. The center of a square ABCD is at the origin and point A is reprsented...

    Text Solution

    |

  11. The value of k for which the inequality | Re (z) | + | Im (z)| leq l...

    Text Solution

    |

  12. The value of lambda for which the inequality |z(1)/|z(1)|+z(2)/|z(2)||...

    Text Solution

    |

  13. If z1a n dz2 both satisfy z+ z =2|z-1| and a r g(z1-z2)=pi/4 , then f...

    Text Solution

    |

  14. If z satisfies |z+1|lt|z-2|, then v=3z+2+i satisfies:

    Text Solution

    |

  15. If z complex number satisfying |z-1| = 1, then which of the followin...

    Text Solution

    |

  16. If z(1),z(2),z(3) are the vertices of an isoscles triangle right angle...

    Text Solution

    |

  17. Show that all the roots of the equation a(1)z^(3)+a(2)z^(2)+a(3)z+a(4)...

    Text Solution

    |

  18. If |z-1|=1, where z is a point on the argand plane, show that(z-2)/(z)...

    Text Solution

    |

  19. Let z be a non-real complex number lying on |z|=1, prove that z=(1+i...

    Text Solution

    |

  20. If |z|=2 and locus of 5z-1 is the circle having radius a and z1^2+z2^2...

    Text Solution

    |