Home
Class 12
MATHS
Let z be a non-real complex number lyi...

Let z be a non-real complex number
lying on `|z|=1,` prove that `z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2)))` (where `i=sqrt(-1).)`

A

`(1-itan((argz)/2))/(1+itan((argz)/2))`

B

`(1+itan((argz)/2))/(1-itan((argz)/(2)))`

C

`(1-itan(argz))/(1+itan((argz)/2))`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`|z|=1`
`rArr z=costheta+isintheta`,
`rArr z=(1-tan^(2)theta/2)/(1+tan^(2)theta/2) +(2itantheta/2)/(1+tan^(2)theta/2)`
`z = (1+itantheta/2)^(2)/((1+itantheta/2)(1-itantheta/2))`
`rArr z=(1+itantheta/2)/(1-itantheta/2) rArr z=(1+itan(argz)/2)/(1-itan(argz)/(2))`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Let z be any non-zero complex number. Then arg(z) + arg (barz) is equal to

Let z_1, z_2 be two complex numbers with |z_1| = |z_2| . Prove that ((z_1 + z_2)^2)/(z_1 z_2) is real.

Let Z and w be two complex number such that |zw|=1 and arg(z)−arg(w)=pi//2 then

If z and omega are two non-zero complex numbers such that |zomega|=1 and arg(z)-arg(omega)=pi/2 , then barzomega is equal to

Let z_1,z_2 be complex numbers with |z_1|=|z_2|=1 prove that |z_1+1| +|z_2+1| +|z_1 z_2+1| geq2 .

Let A(z_(1)) and B(z_(2)) are two distinct non-real complex numbers in the argand plane such that (z_(1))/(z_(2))+(barz_(1))/(z_(2))=2 . The value of |/_ABO| is

Let z be a complex number such that |z|+z=3+I (Where i=sqrt(-1)) Then ,|z| is equal to

Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then prove tha |z|=1.

Find the Area bounded by complex numbers arg|z|lepi/4 and |z-1|lt|z-3|

Let z be a unimodular complex number. Statement-1:arg (z^(2)+barz)="arg"(z) Statement-2:barz= cos("arg"z)-isin("arg"z)

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. Show that all the roots of the equation a(1)z^(3)+a(2)z^(2)+a(3)z+a(4)...

    Text Solution

    |

  2. If |z-1|=1, where z is a point on the argand plane, show that(z-2)/(z)...

    Text Solution

    |

  3. Let z be a non-real complex number lying on |z|=1, prove that z=(1+i...

    Text Solution

    |

  4. If |z|=2 and locus of 5z-1 is the circle having radius a and z1^2+z2^2...

    Text Solution

    |

  5. If |z+barz|+|z-barz|=8, then z lies on

    Text Solution

    |

  6. If a point z(1) is the reflection of a point z(2) through the line b b...

    Text Solution

    |

  7. If z is a complex number satisfying |z^(2)+1|=4|z|, then the minimum v...

    Text Solution

    |

  8. If z(1) and z(2) are two complex numbers satisying the equation. |(i...

    Text Solution

    |

  9. If alpha is an imaginary fifth root of unity, then log(2)|1+alpha+alph...

    Text Solution

    |

  10. The roots of the equation (1+isqrt(3))^(x)-2^(x)=0 form

    Text Solution

    |

  11. If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Let OP.OQ=1 and let O,P and Q be three collinear points. If O and Q re...

    Text Solution

    |

  14. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  15. Let A,B and C be three sets of complex numbers as defined below: {:(,A...

    Text Solution

    |

  16. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  17. In Q.no. 88, if z be any point in A frown B frown C and omega be any p...

    Text Solution

    |

  18. A particle P starts from the point z0=1+2i , where i=sqrt(-1) . It mov...

    Text Solution

    |

  19. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  20. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |