Home
Class 12
MATHS
If |z|=1 and w=(z-1)/(z+1) (where z!=-1)...

If `|z|=1` and `w=(z-1)/(z+1)` (where `z!=-1),` then `R e(w)` is 0 (b) `1/(|z+1|^2)` `|1/(z+1)|,1/(|z+1|^2)` (d) `(sqrt(2))/(|z|1""|^2)`

A

0

B

`-1/(|z+1|^(2))`

C

`|z/(z+1)|.1/(|z+1|^(2))`

D

`sqrt(2)/|z+1|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `|z|=1`,So, let `z=costheta+sintheta`. Then,
`omega=(z-1)/(z+1) = (costheta+isintheta-1)/(costheta+isintheta+1) = 2itantheta//2 rArr "Re"(omega)=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If |z|=1 and z'=(1+z^(2))/(z) , then

If z > 0 ? (1) (z + 1)(z)(z - 1) (2) |z| < 1

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus of omega is equivalent to |z-2|=|z+2|

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If alpha is an imaginary fifth root of unity, then log(2)|1+alpha+alph...

    Text Solution

    |

  2. The roots of the equation (1+isqrt(3))^(x)-2^(x)=0 form

    Text Solution

    |

  3. If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. Let OP.OQ=1 and let O,P and Q be three collinear points. If O and Q re...

    Text Solution

    |

  6. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  7. Let A,B and C be three sets of complex numbers as defined below: {:(,A...

    Text Solution

    |

  8. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  9. In Q.no. 88, if z be any point in A frown B frown C and omega be any p...

    Text Solution

    |

  10. A particle P starts from the point z0=1+2i , where i=sqrt(-1) . It mov...

    Text Solution

    |

  11. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  12. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  13. I f|z|=max{|z-1|,|z+1|}, then

    Text Solution

    |

  14. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  15. The shaded region, where P = (-1,0) ,Q = (-1 + sqrt(2) , sqrt(2) )R =...

    Text Solution

    |

  16. If a, b and c are distinct integers and omegaomega(ne1) is a cube root...

    Text Solution

    |

  17. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  18. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  19. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  20. If |z1|+|z2|=1a n dz1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |