Home
Class 12
MATHS
I f|z|=max{|z-1|,|z+1|}, then...

`I f|z|=max{|z-1|,|z+1|}`, then

A

`|z+barz|=1/2`

B

`z+barz=1`

C

`|z+barz|=1`

D

z-barz=5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( |z| = \max\{|z - 1|, |z + 1|\} \), we will follow these steps: ### Step 1: Define the complex number Let \( z = a + ib \), where \( a \) and \( b \) are real numbers, and \( i \) is the imaginary unit. ### Step 2: Express the modulus of \( z \) The modulus of \( z \) is given by: \[ |z| = \sqrt{a^2 + b^2} \] ### Step 3: Express \( |z - 1| \) and \( |z + 1| \) Now, we calculate \( |z - 1| \) and \( |z + 1| \): \[ |z - 1| = |(a - 1) + ib| = \sqrt{(a - 1)^2 + b^2} \] \[ |z + 1| = |(a + 1) + ib| = \sqrt{(a + 1)^2 + b^2} \] ### Step 4: Set up the equation According to the problem, we have: \[ |z| = \max\{|z - 1|, |z + 1|\} \] This means: \[ \sqrt{a^2 + b^2} = \max\{\sqrt{(a - 1)^2 + b^2}, \sqrt{(a + 1)^2 + b^2}\} \] ### Step 5: Analyze the two cases We will analyze two cases based on the maximum value. **Case 1:** \( |z - 1| \geq |z + 1| \) In this case: \[ \sqrt{a^2 + b^2} = \sqrt{(a - 1)^2 + b^2} \] Squaring both sides, we get: \[ a^2 + b^2 = (a - 1)^2 + b^2 \] This simplifies to: \[ a^2 + b^2 = a^2 - 2a + 1 + b^2 \] Cancelling \( a^2 \) and \( b^2 \) from both sides: \[ 0 = -2a + 1 \implies 2a = 1 \implies a = \frac{1}{2} \] **Case 2:** \( |z + 1| \geq |z - 1| \) In this case: \[ \sqrt{a^2 + b^2} = \sqrt{(a + 1)^2 + b^2} \] Squaring both sides, we get: \[ a^2 + b^2 = (a + 1)^2 + b^2 \] This simplifies to: \[ a^2 + b^2 = a^2 + 2a + 1 + b^2 \] Cancelling \( a^2 \) and \( b^2 \) from both sides: \[ 0 = 2a + 1 \implies 2a = -1 \implies a = -\frac{1}{2} \] ### Step 6: Conclusion From both cases, we find that \( a \) can either be \( \frac{1}{2} \) or \( -\frac{1}{2} \). ### Step 7: Find \( z + z^* \) Now, we will find \( z + z^* \): \[ z + z^* = (a + ib) + (a - ib) = 2a \] Substituting \( a = \frac{1}{2} \): \[ z + z^* = 2 \cdot \frac{1}{2} = 1 \] Thus, \( |z + z^*| = |1| = 1 \). ### Final Answer The correct option is that \( |z + z^*| = 1 \). ---

To solve the problem \( |z| = \max\{|z - 1|, |z + 1|\} \), we will follow these steps: ### Step 1: Define the complex number Let \( z = a + ib \), where \( a \) and \( b \) are real numbers, and \( i \) is the imaginary unit. ### Step 2: Express the modulus of \( z \) The modulus of \( z \) is given by: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If |z|= "max"{|z-2|,|z+2|} , then

If z =x +iy satisfies |z+1-i|=|z-1+i| then

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If A(z_(1)) , B(z_(2)) , C(z_(3)) are vertices of a triangle such that z_(3)=(z_(2)-iz_(1))/(1-i) and |z_(1)|=3 , |z_(2)|=4 and |z_(2)+iz_(1)|=|z_(1)|+|z_(2)| , then area of triangle ABC is

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to

If A (z_1), B (z_2) and C (z_3) are three points in the argand plane where |z_1 +z_2|=||z_1-z_2| and |(1-i)z_1+iz_3|=|z_1|+|z_3|-z_1| , where i = sqrt-1 then

If |z +1| = z + 2(1 - i) , then the value of z

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  2. If z and bar z represent adjacent vertices of a regular polygon of n s...

    Text Solution

    |

  3. I f|z|=max{|z-1|,|z+1|}, then

    Text Solution

    |

  4. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  5. The shaded region, where P = (-1,0) ,Q = (-1 + sqrt(2) , sqrt(2) )R =...

    Text Solution

    |

  6. If a, b and c are distinct integers and omegaomega(ne1) is a cube root...

    Text Solution

    |

  7. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  8. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  9. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  10. If |z1|+|z2|=1a n dz1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  11. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+tz(2...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. The set of points z in the complex plane satisfying |z-i|z||=|z+i|z|| ...

    Text Solution

    |

  14. The set of points z satisfying |z+4|+|z-4|=10 is contained or equal to

    Text Solution

    |

  15. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  16. If |omega|=1, then the set of points z=omega+1/omega is contained in o...

    Text Solution

    |

  17. The number of complex numbersd z, such that abs(z-1)=abs(z+1)=abs(z-i)...

    Text Solution

    |

  18. Let alpha and beta be real and z be a complex number. If z^(2)+az+beta...

    Text Solution

    |

  19. If omega=1 is the complex cube root of unity and matrix H=|{:(,omega,0...

    Text Solution

    |

  20. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |