Home
Class 12
MATHS
Let z(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,...

Let `z_(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9`. Then, `1/10{|1-z_(1)||1-z_(2)|……|1-z_(9)|}` equals

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \frac{1}{10} \left| 1 - z_1 \right| \left| 1 - z_2 \right| \cdots \left| 1 - z_9 \right| \) where \( z_k = \cos\left(\frac{2k\pi}{10}\right) + i \sin\left(\frac{2k\pi}{10}\right) \) for \( k = 1, 2, \ldots, 9 \). ### Step-by-step Solution: 1. **Identify the values of \( z_k \)**: The values \( z_k \) are the 10th roots of unity, given by: \[ z_k = e^{\frac{2\pi i k}{10}} = \cos\left(\frac{2k\pi}{10}\right) + i \sin\left(\frac{2k\pi}{10}\right) \] for \( k = 1, 2, \ldots, 9 \). 2. **Recognize the polynomial**: The 10th roots of unity satisfy the polynomial equation: \[ z^{10} - 1 = 0 \] This can be factored as: \[ z^{10} - 1 = (z - 1)(z - z_1)(z - z_2) \cdots (z - z_9) \] 3. **Evaluate at \( z = 1 \)**: We need to evaluate \( |1 - z_k| \) for \( k = 1, 2, \ldots, 9 \): \[ |1 - z_k| = |1 - e^{\frac{2\pi i k}{10}}| \] 4. **Use the formula for the magnitude**: The magnitude can be computed as: \[ |1 - z_k| = |1 - (\cos\left(\frac{2k\pi}{10}\right) + i \sin\left(\frac{2k\pi}{10}\right))| = \sqrt{(1 - \cos\left(\frac{2k\pi}{10}\right))^2 + \sin^2\left(\frac{2k\pi}{10}\right)} \] Simplifying this gives: \[ |1 - z_k| = \sqrt{2(1 - \cos\left(\frac{2k\pi}{10}\right))} = 2 \sin\left(\frac{k\pi}{10}\right) \] 5. **Calculate the product**: Therefore, we have: \[ \prod_{k=1}^{9} |1 - z_k| = \prod_{k=1}^{9} 2 \sin\left(\frac{k\pi}{10}\right) = 2^9 \prod_{k=1}^{9} \sin\left(\frac{k\pi}{10}\right) \] 6. **Use the known product of sines**: The product \( \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}} \) for \( n = 10 \): \[ \prod_{k=1}^{9} \sin\left(\frac{k\pi}{10}\right) = \frac{10}{2^9} \] 7. **Substituting back**: Thus, \[ \prod_{k=1}^{9} |1 - z_k| = 2^9 \cdot \frac{10}{2^9} = 10 \] 8. **Final calculation**: Now substituting back into the original expression: \[ \frac{1}{10} \prod_{k=1}^{9} |1 - z_k| = \frac{1}{10} \cdot 10 = 1 \] ### Conclusion: The final answer is: \[ \boxed{1} \]

To solve the problem, we need to evaluate the expression \( \frac{1}{10} \left| 1 - z_1 \right| \left| 1 - z_2 \right| \cdots \left| 1 - z_9 \right| \) where \( z_k = \cos\left(\frac{2k\pi}{10}\right) + i \sin\left(\frac{2k\pi}{10}\right) \) for \( k = 1, 2, \ldots, 9 \). ### Step-by-step Solution: 1. **Identify the values of \( z_k \)**: The values \( z_k \) are the 10th roots of unity, given by: \[ z_k = e^{\frac{2\pi i k}{10}} = \cos\left(\frac{2k\pi}{10}\right) + i \sin\left(\frac{2k\pi}{10}\right) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Let z_(k)=cos((2kpi)/(10))+isin((2kpi)/(10)) ,k=1,2,…,9. Then match the column

Let arg(z_(k))=((2k+1)pi)/(n) where k=1,2,………n . If arg(z_(1),z_(2),z_(3),………….z_(n))=pi , then n must be of form (m in z)

If Z_r=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z_1z_2z_3z_4z_5 is equal to

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1)-z_(2)| gt |z_(1)|-|z_(2)|

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

1-sum_(k=1)^9 cos\ (2pik)/10 equals to…..

In Q. No. 121, 1-sum_(k=1)^(9)cos(2kpi)/10 equals

if z_(1)=3+i and z_(2) = 2-i, " then" |(z_(1) +z_(2)-1)/(z_(1) -z_(2)+i)| is

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |(z_(1))/(z_(2))|= (|z_(1)|)/(|z_(2)|)

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1)z_(2)|= |z_(1)||z_(2)|

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  2. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  3. Let z(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9. Then, 1/10{|1-z(1)|...

    Text Solution

    |

  4. In Q. No. 121, 1-sum(k=1)^(9)cos(2kpi)/10 equals

    Text Solution

    |

  5. If z is a complex number such that |z|geq2 , then the minimum value...

    Text Solution

    |

  6. A complex number z is said to be unimodular if abs(z)=1. Suppose z(1) ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) ...

    Text Solution

    |

  9. If z(1) and z(2) are the complex roots of the equation (x-3)^(3) + 1=...

    Text Solution

    |

  10. If |z-1| =1 and arg(z)=theta, where z ne 0 and theta is acute, then (1...

    Text Solution

    |

  11. If z is a complex number lying in the first quadrant such that "Re"(z)...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If z is a complex number satisfying ∣z 2 +1∣=4∣z∣, then the minimum ...

    Text Solution

    |

  14. Locus of z if arg[z-(1+i)] = {:{(3pi//4 when |z| lt = |z-2|), (-pi//4 ...

    Text Solution

    |

  15. Let z in C and if A={z,arg(z)=(pi)/(4)} and B={z,arg(z-3-3i)=(2pi)/(3)...

    Text Solution

    |

  16. If z is any complex number satisfying |z - 3 - 2i | less than or equal...

    Text Solution

    |

  17. Let z=1+ai be a complex number, a > 0,such that z^3 is a real number....

    Text Solution

    |

  18. Let a,b in R and a^(2)+b^(2) ne 0. Suppose S={z in C:z=(1)/(a+ibt),t...

    Text Solution

    |

  19. Let a,b in R and a^(2)+b^(2) ne 0. Suppose S={z in C:z=(1)/(a+ibt),t...

    Text Solution

    |

  20. Let a,b in R and a^(2)+b^(2) ne 0. Suppose S={z in C:z=(1)/(a+ibt),t...

    Text Solution

    |