Home
Class 12
MATHS
Statement-1: for any two complex numbers...

Statement-1: for any two complex numbers `z_(1)` and `z_(2)`
`|z_(1)+z_(2)|^(2) le (1+1/lamba)|z_(2)|^(2)`, where `lambda` is a positive real number.
Statement:2 `AM ge GM`.

A

Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.

B

Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.

C

Statement-1 is True, statement-2 is false,

D

statement-1 is False, Statement-2 is true.

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

For any two complex numbers z_(1) and z_(2) |z_(1)+z_(2)|^(2) =(|z_(1)|^(2)+|z_(2)|^(2))

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

For two complex numbers z_(1) and z_(2) , we have |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then

For any two complex numbers z_1 and z_2 , we have |z_1+z_2|^2=|z_1|^2+|z_2|^2 , then

For any two complex numbers z_1 and z_2 , we have |z_1+z_2|^2=|z_1|^2+|z_2|^2 , then

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1+z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|lt=|z_1|+|z_2|

For any two complex numbers z_1 and z_2 , prove that Re(z_1z_2)=Re(z_1) Re(z_2)-Im(z_1) Im(z_2) .

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2 +|\z_1-z_2|^2=2[|\z_1|^2+|\z_2|^2]