Home
Class 12
MATHS
Statement-1, If z(1),z(2),z(3),……………….,z...

Statement-1, If `z_(1),z_(2),z_(3),……………….,z_(n)` are uni-modular complex numbers, then
`|z_(1)+z+(2)+…………+z_(n)|=|1/z_(1)+1/z_(2)+…………..+1/z_(n)|`
Statement-2: For any complex number z, `zbarz=|z|^(2)`

A

Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.

B

Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.

C

Statement-1 is True, statement-2 is false,

D

statement-1 is False, Statement-2 is true.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that if \( z_1, z_2, \ldots, z_n \) are uni-modular complex numbers, then \[ |z_1 + z_2 + \ldots + z_n| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n} \right| \] ### Step-by-step Solution: 1. **Understanding Uni-modular Complex Numbers**: - A complex number \( z \) is called uni-modular if its modulus is 1, i.e., \( |z| = 1 \). - Therefore, for each \( z_i \), we have \( |z_i| = 1 \). 2. **Expressing the Conjugate**: - For any complex number \( z \), the conjugate \( \overline{z} \) is given by \( \overline{z} = \frac{1}{z} \) when \( |z| = 1 \). - Thus, we can write: \[ \overline{z_1} = \frac{1}{z_1}, \quad \overline{z_2} = \frac{1}{z_2}, \quad \ldots, \quad \overline{z_n} = \frac{1}{z_n} \] 3. **Taking the Modulus of the Sum**: - We need to compute \( |z_1 + z_2 + \ldots + z_n| \). - The modulus of a sum of complex numbers can be expressed as: \[ |z_1 + z_2 + \ldots + z_n| = |(z_1 + z_2 + \ldots + z_n)| \] 4. **Taking the Conjugate of the Sum**: - The conjugate of the sum is: \[ \overline{z_1 + z_2 + \ldots + z_n} = \overline{z_1} + \overline{z_2} + \ldots + \overline{z_n} \] - Substituting the expressions for the conjugates: \[ \overline{z_1 + z_2 + \ldots + z_n} = \frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n} \] 5. **Equating the Moduli**: - Since \( |z| = |\overline{z}| \) for any complex number \( z \), we have: \[ |z_1 + z_2 + \ldots + z_n| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n} \right| \] 6. **Conclusion**: - Therefore, we have shown that: \[ |z_1 + z_2 + \ldots + z_n| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n} \right| \] - This proves Statement 1 is true.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

if z_(1),z_(2),z_(3),…..z_(n) are complex numbers such that |z_(1)|=|z_(2)| =….=|z_(n)| = |1/z_(1) +1/z_(2) + 1/z_(3) +….+1/z_(n)| =1 Then show that |z_(1) +z_(2) +z_(3) +……+z_(n)|=1

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If z_(1), z_(2) in C (set of complex numbers), prove that |z_(1) + z_(2)| le |z_(1)| + |z_(2)|

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

For two complex numbers z_(1) and z_(2) , we have |(z_(1)-z_(2))/(1-barz_(1)z_(2))|=1 , then