Home
Class 12
MATHS
Statement-1, if z(1) and z(2) are two co...

Statement-1, if `z_(1)` and `z_(2)` are two complex numbers such that `|z_(1)| le 1, |z_(2)| le 1`, then
`|z_(1)-z_(2)|^(2) le (|z_(1)|-|z_(2)|)^(2)-"arg"(z_(2))}^(2)`
Statement-2 `sintheta gt theta` for all `theta gt 0`.

A

Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.

B

Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.

C

Statement-1 is True, statement-2 is false,

D

statement-1 is False, Statement-2 is true.

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)| , then is it necessary that z_(1) = z_(2)

If z_(1) and z_(2) are to complex numbers such that two |z_(1)|=|z_(2)|+|z_(1)-z_(2)| , then arg (z_(1))-"arg"(z_(2))

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

If z_1,z_2 are two complex numbers such that Im(z_1+z_2)=0,Im(z_1z_2)=0 , then:

Let z_(1),z_(2) be two complex numbers such that z_(1)+z_(2) and z_(1)z_(2) both are real, then

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

If z_(1), z_(2) in C (set of complex numbers), prove that |z_(1) + z_(2)| le |z_(1)| + |z_(2)|

If z_(1) , z_(2) are complex numbers such that Re(z_(1))=|z_(1)-2| , Re(z_(2))=|z_(2)-2| and arg(z_(1)-z_(2))=pi//3 , then Im(z_(1)+z_(2))=