Home
Class 12
MATHS
Statement-1: for any non-zero complex nu...

Statement-1: for any non-zero complex number z, `|z/|z|-1| le "arg"(z)`
Stetement-2 `:sintheta le theta` for `theta ge 0`

A

Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.

B

Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.

C

Statement-1 is True, statement-2 is false,

D

statement-1 is False, Statement-2 is true.

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Statement -1: for any complex number z, |Re(z)|+|Im(z)| le |z| Statement-2: |sintheta| le 1 , for all theta

Statement-1: for any non-zero complex number |z-1| le ||z|-1|+|z| arg (z) Statement-2 : For any non-zero complex number z |z/(|z|)-1| le "arg"(z)

Let z be any non-zero complex number. Then arg(z) + arg (barz) is equal to

For any complex number z, maximum value of |z|-|z-1| is

Statement -1 : For any four complex numbers z_(1),z_(2),z_(3) and z_(4) , it is given that the four points are concyclic, then |z_(1)| = |z_(2)| = |z_(3)|=|z_(4)| Statement -2 : Modulus of a complex number represents the distance form origin.

For any complex number z , the minimum value of |z|+|z-1|

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

Statement-1, if z_(1) and z_(2) are two complex numbers such that |z_(1)| le 1, |z_(2)| le 1 , then |z_(1)-z_(2)|^(2) le (|z_(1)|-|z_(2)|)^(2)-"arg"(z_(2))}^(2) Statement-2 sintheta gt theta for all theta gt 0 .

Let Z and w be two complex number such that |zw|=1 and arg(z)−arg(w)=pi//2 then

If z be a non-zero complex number, show that (bar(z^(-1)))= (bar(z))^(-1)