Home
Class 12
MATHS
Let z and omega be complex numbers such ...

Let z and omega be complex numbers such that `|z|=|omega|` and arg (z) dentoe the principal of z.
Statement-1: If argz+ arg `omega=pi`, then `z=-baromega`
Statement -2: `|z|=|omega|` implies arg z-arg `baromega=pi`, then `z=-baromega`

A

Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.

B

Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.

C

Statement-1 is True, statement-2 is false,

D

statement-1 is False, Statement-2 is true.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both statements step by step. ### Step-by-Step Solution **Given:** - Let \( z \) and \( \omega \) be complex numbers such that \( |z| = |\omega| \). - \( \arg(z) \) denotes the principal argument of \( z \). ### Statement 1: If \( \arg(z) + \arg(\omega) = \pi \), then \( z = -\overline{\omega} \). 1. **Express \( z \) and \( \omega \) in polar form:** \[ z = |z|(\cos(\arg(z)) + i \sin(\arg(z))) = |z| e^{i \arg(z)} \] \[ \omega = |\omega|(\cos(\arg(\omega)) + i \sin(\arg(\omega))) = |\omega| e^{i \arg(\omega)} \] 2. **Using the condition \( |z| = |\omega| \):** Let \( r = |z| = |\omega| \). Thus, we can write: \[ z = r e^{i \theta} \quad \text{and} \quad \omega = r e^{i \phi} \] where \( \theta = \arg(z) \) and \( \phi = \arg(\omega) \). 3. **Given \( \arg(z) + \arg(\omega) = \pi \):** This implies: \[ \theta + \phi = \pi \implies \phi = \pi - \theta \] 4. **Substituting \( \phi \) into the expression for \( \omega \):** \[ \omega = r e^{i(\pi - \theta)} = r(\cos(\pi - \theta) + i \sin(\pi - \theta)) = r(-\cos(\theta) + i \sin(\theta)) \] \[ \omega = -r(\cos(\theta) - i \sin(\theta)) = -\overline{z} \] 5. **Thus, we have:** \[ z = -\overline{\omega} \] Therefore, Statement 1 is **True**. ### Statement 2: If \( |z| = |\omega| \) implies \( \arg(z) - \arg(\overline{\omega}) = \pi \), then \( z = -\overline{\omega} \). 1. **Recall that \( \overline{\omega} \) has the same modulus as \( \omega \):** \[ |\overline{\omega}| = |\omega| = r \] 2. **Express \( \overline{\omega} \) in polar form:** \[ \overline{\omega} = r e^{-i \phi} \] 3. **Using the condition \( \arg(z) - \arg(\overline{\omega}) = \pi \):** Let \( \theta = \arg(z) \) and \( \phi = \arg(\overline{\omega}) \). Then: \[ \theta - (-\phi) = \pi \implies \theta + \phi = \pi \] 4. **This is the same condition as in Statement 1:** Therefore, we can conclude: \[ z = -\overline{\omega} \] Thus, Statement 2 is also **True**. ### Conclusion Both statements lead to the conclusion that \( z = -\overline{\omega} \). However, the implication in Statement 2 is not a direct consequence of the condition given; hence, it is misleading. ### Final Answer - Statement 1: True - Statement 2: False
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|141 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Let Z and w be two complex number such that |zw|=1 and arg(z)−arg(w)=pi//2 then

Let z and omega be two non-zero complex numbers, such that |z|=|omega| and "arg"(z)+"arg"(omega)=pi . Then, z equals

Let z and omega be two non zero complex numbers such that |z|=|omega| and argz+argomega=pi , then z equals (A) omega (B) -omega (C) baromega (D) -baromega

Let z and omega be two non zero complex numbers such that |z|=|omega| and argz+argomega=pi, then z equals (A) omega (B) -omega (C) baromega (D) -baromega

Let z and w be two nonzero complex numbers such that |z|=|w| and arg(z)+a r g(w)=pidot Then prove that z=- barw dot

Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then argz equals

Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then argz equals

If z and omega are two non-zero complex numbers such that |zomega|=1 and arg(z)-arg(omega)=pi/2 , then barzomega is equal to

Let za n dw be two nonzero complex numbers such that |z|=|w|a n d arg(z)+a r g(w)=pidot Then prove that z=- bar w dot

If z and w are two complex number such that |z w|=1 and a rg(z)-a rg(w)=pi/2 , then show that barz w=-i