Home
Class 12
MATHS
If "Im"(2z+1)/(iz+1)=-2, then locus of z...

If `"Im"(2z+1)/(iz+1)=-2`, then locus of z, is

A

a circle

B

a parabola

C

a straight line

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the locus of the complex number \( z \) given that the imaginary part of \( \frac{2z + 1}{iz + 1} = -2 \). ### Step-by-Step Solution: 1. **Express \( z \) in terms of \( x \) and \( y \)**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. 2. **Substitute \( z \) into the equation**: Substitute \( z \) into the expression: \[ 2z + 1 = 2(x + iy) + 1 = 2x + 1 + 2iy \] \[ iz + 1 = i(x + iy) + 1 = ix - y + 1 = 1 - y + ix \] 3. **Form the fraction**: Now, we can write: \[ \frac{2z + 1}{iz + 1} = \frac{2x + 1 + 2iy}{1 - y + ix} \] 4. **Multiply numerator and denominator by the conjugate of the denominator**: The conjugate of the denominator \( 1 - y + ix \) is \( 1 - y - ix \). Thus, we have: \[ \frac{(2x + 1 + 2iy)(1 - y - ix)}{(1 - y)^2 + x^2} \] 5. **Expand the numerator**: Expanding the numerator: \[ (2x + 1)(1 - y) + (2iy)(1 - y) - (2x + 1)(ix) - (2iy)(ix) \] This gives: \[ (2x + 1 - 2xy - y) + i(2y - 2x - 2y^2) \] 6. **Separate real and imaginary parts**: The real part is \( 2x + 1 - 2xy - y \) and the imaginary part is \( 2y - 2x - 2y^2 \). 7. **Set the imaginary part equal to -2**: According to the problem, the imaginary part equals -2: \[ 2y - 2x - 2y^2 = -2 \] 8. **Rearrange the equation**: Rearranging gives: \[ 2y - 2x - 2y^2 + 2 = 0 \] Dividing through by 2: \[ y - x - y^2 + 1 = 0 \] Rearranging gives: \[ y^2 - y + x - 1 = 0 \] 9. **Identify the locus**: This is a quadratic equation in \( y \). The locus of \( z \) is a parabola. ### Final Answer: The locus of \( z \) is given by the equation: \[ y^2 - y + x - 1 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If Imz((z-1)/(2z+1))=-4 , then locus of z is

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

If Re((2z+1)/(iz+1))=1 , the the locus of the point representing z in the complex plane is a (A) straight line (B) circle (C) parabola (D) none of these

If log_(sqrt3) |(|z|^2 -|z| +1|)/(|z|+2)|<2 then locus of z is

If z=x+iy and real part ((z-1)/(2z+i))=1 then locus of z is

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is

Statement-1: If z_(1),z_(2) are affixes of two fixed points A and B in the Argand plane and P(z) is a variable point such that "arg" (z-z_(1))/(z-z_(2))=pi/2 , then the locus of z is a circle having z_(1) and z_(2) as the end-points of a diameter. Statement-2 : arg (z_(2)-z_(1))/(z_(1)-z) = angleAPB

If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of the point representing in the complex plane.

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. The inequality |z-4| < |z-2| represents

    Text Solution

    |

  2. Find the number of non-zero integral solutions of the equation |1-i|^(...

    Text Solution

    |

  3. If "Im"(2z+1)/(iz+1)=-2, then locus of z, is

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If x=-5+2sqrt(-4) , find the value of x^4+9x^3+35 x^2-x+4.

    Text Solution

    |

  6. If z(1),z(2), z(3) are vertices of an equilateral triangle with z(0) i...

    Text Solution

    |

  7. If z(1) , z(2) are two complex numbers such that I m (z(1) + z(2)) = 0...

    Text Solution

    |

  8. If z^2+z|z|+|z^2|=0, then the locus z is a. a circle b. a straight ...

    Text Solution

    |

  9. If log(sqrt3) ((|z|^(2)-|z|+1)/(2+|z|)) lt 2 ,then the locus of z is

    Text Solution

    |

  10. Let g(x) and h(x) are two polynomials such that the polynomial P(x) =g...

    Text Solution

    |

  11. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  12. if x(k) = cos pi/3^(k) + isin pi/3^(k) , find x(1)x(2)x(3)……oo (...

    Text Solution

    |

  13. If (a1+ib1)(a2+ib2).....(an+ibn)=A+iB, then (a1^2+b1^2)(a2^2+b2^2).......

    Text Solution

    |

  14. If (a(1)+ib(1))(a(2)+ib(2))………………(a(n)+ib(n))=A+iB, then sum(i=1)^(n) ...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  16. If alpha,betaandgamma are the cube roots of P(p)lt0), then for any x, ...

    Text Solution

    |

  17. prove that tan(i" In"((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a, ...

    Text Solution

    |

  18. Find the relation if z1, z2, z3, z4 are the affixes of the vertices of...

    Text Solution

    |

  19. The locus of the points representing the complex numbers z for which |...

    Text Solution

    |

  20. For n=6k, k in z, ((1-isqrt(3))/(2))^(n)+((-1-isqrt(3))/(2))^(n) has t...

    Text Solution

    |