Home
Class 12
MATHS
If (a(1)+ib(1))(a(2)+ib(2))………………(a(n)+i...

If `(a_(1)+ib_(1))(a_(2)+ib_(2))………………(a_(n)+ib_(n))=A+iB`, then `sum_(i=1)^(n) tan^(-1)(b_(i)/a_(i))` is equal to

A

`B/A`

B

`tan(B/A)`

C

`tan^(-1)(B/A)`

D

`tan^(-1)(A/B)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of the expression: \[ \sum_{i=1}^{n} \tan^{-1}\left(\frac{b_i}{a_i}\right) \] given that: \[ (a_1 + ib_1)(a_2 + ib_2) \cdots (a_n + ib_n) = A + iB \] ### Step-by-Step Solution: 1. **Understanding the Product of Complex Numbers**: The product of the complex numbers can be expressed as: \[ (a_1 + ib_1)(a_2 + ib_2) \cdots (a_n + ib_n) = A + iB \] 2. **Using the Argument Property**: We know that the argument of a product of complex numbers is the sum of their arguments: \[ \text{arg}(z_1 z_2) = \text{arg}(z_1) + \text{arg}(z_2) \] Therefore, we have: \[ \text{arg}((a_1 + ib_1)(a_2 + ib_2) \cdots (a_n + ib_n)) = \text{arg}(A + iB) \] 3. **Expressing Arguments**: The argument of a complex number \(a + ib\) can be expressed as: \[ \text{arg}(a + ib) = \tan^{-1}\left(\frac{b}{a}\right) \] Thus, we can write: \[ \text{arg}(a_1 + ib_1) + \text{arg}(a_2 + ib_2) + \cdots + \text{arg}(a_n + ib_n) = \text{arg}(A + iB) \] 4. **Substituting the Arguments**: Substituting the expressions for the arguments, we get: \[ \tan^{-1}\left(\frac{b_1}{a_1}\right) + \tan^{-1}\left(\frac{b_2}{a_2}\right) + \cdots + \tan^{-1}\left(\frac{b_n}{a_n}\right) = \tan^{-1}\left(\frac{B}{A}\right) \] 5. **Final Expression**: Therefore, we can express the sum as: \[ \sum_{i=1}^{n} \tan^{-1}\left(\frac{b_i}{a_i}\right) = \tan^{-1}\left(\frac{B}{A}\right) \] ### Conclusion: The final result is: \[ \sum_{i=1}^{n} \tan^{-1}\left(\frac{b_i}{a_i}\right) = \tan^{-1}\left(\frac{B}{A}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),…a_(n+1) are in arithmetic progression, then sum_(k=0)^(n) .^(n)C_(k.a_(k+1) is equal to (a) 2^(n)(a_(1)+a_(n+1)) (b) 2^(n-1)(a_(1)+a_(n+1)) (c) 2^(n+1)(a_(1)+a_(n+1)) (d) (a_(1)+a_(n+1))

If A_(i)= [(2^(-i),3^(-i)),(3^(-i),2^(-i))],then sum_(i=1)^(oo) det (A_(i)) is equal to

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

Let a_(1), a_(2), a_(3) , … be a G. P. such that a_(1)lt0 , a_(1)+a_(2)=4 and a_(3)+a_(4)=16 . If sum_(i=1)^(9) a_(i) = 4lambda , then lambda is equal to :

For a sequence {a_(n)}, a_(1) = 2 and (a_(n+1))/(a_(n)) = 1/3 , Then sum_(r=1)^(oo) a_(r) is

For an increasing G.P. a_(1), a_(2), a_(3),.....a_(n), " If " a_(6) = 4a_(4), a_(9) - a_(7) = 192 , then the value of sum_(l=1)^(oo) (1)/(a_(i)) is

If a_(1)=a, a_(2)=b, a_(n+2)=(a_(n+1)+a_(n))/2, nge 0 then lim_(n to oo) a_(n) is (a+lamda_(1)b)/(lamda_(2)), (lamda_(1),lamda_(2) epsilonI) where lamda_(1)+lamda_(2) is _______

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

For any n positive numbers a_(1),a_(2),…,a_(n) such that sum_(i=1)^(n) a_(i)=alpha , the least value of sum_(i=1)^(n) a_(i)^(-1) , is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. if x(k) = cos pi/3^(k) + isin pi/3^(k) , find x(1)x(2)x(3)……oo (...

    Text Solution

    |

  2. If (a1+ib1)(a2+ib2).....(an+ibn)=A+iB, then (a1^2+b1^2)(a2^2+b2^2).......

    Text Solution

    |

  3. If (a(1)+ib(1))(a(2)+ib(2))………………(a(n)+ib(n))=A+iB, then sum(i=1)^(n) ...

    Text Solution

    |

  4. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  5. If alpha,betaandgamma are the cube roots of P(p)lt0), then for any x, ...

    Text Solution

    |

  6. prove that tan(i" In"((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a, ...

    Text Solution

    |

  7. Find the relation if z1, z2, z3, z4 are the affixes of the vertices of...

    Text Solution

    |

  8. The locus of the points representing the complex numbers z for which |...

    Text Solution

    |

  9. For n=6k, k in z, ((1-isqrt(3))/(2))^(n)+((-1-isqrt(3))/(2))^(n) has t...

    Text Solution

    |

  10. The product of all values of (cosalpha+isinalpha)^(3//5) is

    Text Solution

    |

  11. If C^(2)+S^(2)=1, then (1+C+iS)/(1+C-iS) is equal to

    Text Solution

    |

  12. The centre of a square ABCD is at z=0, A is z(1). Then, the centroid o...

    Text Solution

    |

  13. The number of solutions of the system of equations "Re(z^(2))=0, |z|=2...

    Text Solution

    |

  14. The vector z=-4+5i is turned counter clockwise through an angle of 180...

    Text Solution

    |

  15. The value of [sqrt(2)(cos(56^(@)15^('))+isin(56^(@)15^('))]^(8), is

    Text Solution

    |

  16. Find the complex number z satisfying the equation |(z-12)/(z-8i)|= (5)...

    Text Solution

    |

  17. The vertices B and D of a parallelogram are 1-2i and 4-2i If the diago...

    Text Solution

    |

  18. If the complex number z(1) " and " z(2) are such that arg (z(1)) - ar...

    Text Solution

    |

  19. The join of z(1)=a+ib and z(2)=1/(-a+ib) passes through

    Text Solution

    |

  20. If z(1),z(2),z(3),z(4) are the affixes of the four points in the Ar...

    Text Solution

    |