Home
Class 12
MATHS
If C^(2)+S^(2)=1, then (1+C+iS)/(1+C-iS)...

If `C^(2)+S^(2)=1`, then `(1+C+iS)/(1+C-iS)` is equal to

A

`C+iS`

B

`C-iS`

C

`S+iC`

D

`S-iC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{1 + C + iS}{1 + C - iS}\) given that \(C^2 + S^2 = 1\). ### Step-by-step Solution: 1. **Let \( A = \frac{1 + C + iS}{1 + C - iS} \)** 2. **Rationalize the expression**: Multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 + C + iS\). \[ A = \frac{(1 + C + iS)(1 + C + iS)}{(1 + C - iS)(1 + C + iS)} \] 3. **Calculate the numerator**: \[ (1 + C + iS)(1 + C + iS) = (1 + C)^2 + 2(1 + C)(iS) + (iS)^2 \] Expanding this gives: \[ = (1 + 2C + C^2) + 2(1 + C)(iS) - S^2 \] Since \(i^2 = -1\), we have: \[ = 1 + 2C + C^2 - S^2 + 2(1 + C)(iS) \] 4. **Calculate the denominator**: \[ (1 + C - iS)(1 + C + iS) = (1 + C)^2 - (iS)^2 \] This simplifies to: \[ = (1 + 2C + C^2) + S^2 \] 5. **Combine the results**: The numerator is: \[ 1 + 2C + C^2 - S^2 + 2(1 + C)(iS) \] The denominator is: \[ 1 + 2C + C^2 + S^2 \] 6. **Substituting \(C^2 + S^2 = 1\)**: Since \(C^2 + S^2 = 1\), we can replace \(C^2 - S^2\) in the numerator: \[ = 1 + 2C + (C^2 - S^2) + 2(1 + C)(iS) \] The denominator simplifies to: \[ = 1 + 2C + 1 = 2 + 2C \] 7. **Final expression**: Now we have: \[ A = \frac{(1 + 2C + 1) + 2(1 + C)(iS)}{2 + 2C} \] Simplifying this gives: \[ = \frac{2 + 2C + 2(1 + C)(iS)}{2(1 + C)} \] \[ = \frac{2(1 + C + (1 + C)iS)}{2(1 + C)} \] Cancelling \(2(1 + C)\) from the numerator and denominator: \[ A = 1 + iS \] ### Conclusion: Thus, the value of \(\frac{1 + C + iS}{1 + C - iS}\) is \(C + iS\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If a+b+c=2,a^(2)+b^(2)+c^(2)=1 and abc = 3 then 1/a+1/b+1/c is equal to

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z)) is equal to :

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)+2C_(1) +3C_(2)+. . . .+(n+1)C_(n) is equal to

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. For n=6k, k in z, ((1-isqrt(3))/(2))^(n)+((-1-isqrt(3))/(2))^(n) has t...

    Text Solution

    |

  2. The product of all values of (cosalpha+isinalpha)^(3//5) is

    Text Solution

    |

  3. If C^(2)+S^(2)=1, then (1+C+iS)/(1+C-iS) is equal to

    Text Solution

    |

  4. The centre of a square ABCD is at z=0, A is z(1). Then, the centroid o...

    Text Solution

    |

  5. The number of solutions of the system of equations "Re(z^(2))=0, |z|=2...

    Text Solution

    |

  6. The vector z=-4+5i is turned counter clockwise through an angle of 180...

    Text Solution

    |

  7. The value of [sqrt(2)(cos(56^(@)15^('))+isin(56^(@)15^('))]^(8), is

    Text Solution

    |

  8. Find the complex number z satisfying the equation |(z-12)/(z-8i)|= (5)...

    Text Solution

    |

  9. The vertices B and D of a parallelogram are 1-2i and 4-2i If the diago...

    Text Solution

    |

  10. If the complex number z(1) " and " z(2) are such that arg (z(1)) - ar...

    Text Solution

    |

  11. The join of z(1)=a+ib and z(2)=1/(-a+ib) passes through

    Text Solution

    |

  12. If z(1),z(2),z(3),z(4) are the affixes of the four points in the Ar...

    Text Solution

    |

  13. The value of sum(r=1)^(8)(sin((2rpi)/9)+icos((2rpi)/9)), is

    Text Solution

    |

  14. If z(1),z(2),z(3),…,z(n) are n,nth roots of unity, then for k=1,2,3,…n

    Text Solution

    |

  15. If z(1),z(2) and z(3), z(4) are two pairs of conjugate complex numbers...

    Text Solution

    |

  16. If |z(1)|=|z(2)| and arg (z(1))+"arg"(z(2))=0, then

    Text Solution

    |

  17. If one vertex of a square whose diagonals intersect at the origin is 3...

    Text Solution

    |

  18. The value of z satisfying the equation logz+logz^2+dot+logz^n=0i s

    Text Solution

    |

  19. If |z(1)|= |z(2)|= ….= |z(n)|=1, prove that |z(1) + z(2) + …+ z(n)|= |...

    Text Solution

    |

  20. If omega is a cube root of unity and (1+omega)^7=A+Bomega then find th...

    Text Solution

    |