Home
Class 12
MATHS
The value of [sqrt(2)(cos(56^(@)15^('))+...

The value of `[sqrt(2)(cos(56^(@)15^('))+isin(56^(@)15^('))]^(8)`, is

A

`4i`

B

`8i`

C

`16i`

D

`-16i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \([ \sqrt{2} (\cos(56^\circ 15') + i \sin(56^\circ 15')]^{8}\). ### Step-by-Step Solution: 1. **Convert Minutes to Degrees**: - We know that \(1 \text{ minute} = \frac{1}{60} \text{ degrees}\). - Therefore, \(15' = 15 \times \frac{1}{60} = \frac{1}{4} \text{ degrees}\). - Thus, \(56^\circ 15' = 56^\circ + \frac{1}{4}^\circ = 56.25^\circ\). 2. **Express in Polar Form**: - We can express the complex number in polar form as: \[ z = \sqrt{2} \left( \cos(56.25^\circ) + i \sin(56.25^\circ) \right) \] - This can be rewritten using Euler's formula: \[ z = \sqrt{2} e^{i \cdot 56.25^\circ} \] 3. **Raise to the Power of 8**: - We need to raise \(z\) to the power of 8: \[ z^8 = \left( \sqrt{2} e^{i \cdot 56.25^\circ} \right)^8 \] - This simplifies to: \[ z^8 = (\sqrt{2})^8 \cdot (e^{i \cdot 56.25^\circ})^8 \] - Calculating \((\sqrt{2})^8\): \[ (\sqrt{2})^8 = 2^{4} = 16 \] - And for the exponential part: \[ (e^{i \cdot 56.25^\circ})^8 = e^{i \cdot (8 \cdot 56.25^\circ)} = e^{i \cdot 450^\circ} \] 4. **Simplify the Angle**: - Since \(450^\circ\) can be simplified by subtracting \(360^\circ\): \[ 450^\circ - 360^\circ = 90^\circ \] - Thus, \(e^{i \cdot 450^\circ} = e^{i \cdot 90^\circ}\). 5. **Express in Rectangular Form**: - Now, using Euler's formula again: \[ e^{i \cdot 90^\circ} = \cos(90^\circ) + i \sin(90^\circ) = 0 + i \cdot 1 = i \] 6. **Final Result**: - Therefore, we have: \[ z^8 = 16 \cdot i \] Thus, the value of \([ \sqrt{2} (\cos(56^\circ 15') + i \sin(56^\circ 15')]^{8}\) is \(16i\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

The value of 2 sin 15^(@).cos75^(@)

Find the value of cos ^(2) 45 ^(@) - sin ^(2) 15 ^(@).

Value of Sin15^(@).cos15^(@) is:

The value of tan^6(15^@)-15tan^4(15^@)+15tan^2(15^@)-3 is

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

Evaluate : 2 sin 15 ^(@) cos 15 ^(@)

Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@) (iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)

Evaluate ((cos15^(@)-sin15^(@)+1)/(cos15^(@)+sin15^(@)+1))((1+sin15^(@))/(cos15^(@)))

find value of cos 15^@

If the equation of base of an equilateral triangle is 2x-y=1 and the vertex is (-1,2), then the length of the sides of the triangle is sqrt((20)/3) (b) 2/(sqrt(15)) sqrt(8/(15)) (d) sqrt((15)/2)

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. The number of solutions of the system of equations "Re(z^(2))=0, |z|=2...

    Text Solution

    |

  2. The vector z=-4+5i is turned counter clockwise through an angle of 180...

    Text Solution

    |

  3. The value of [sqrt(2)(cos(56^(@)15^('))+isin(56^(@)15^('))]^(8), is

    Text Solution

    |

  4. Find the complex number z satisfying the equation |(z-12)/(z-8i)|= (5)...

    Text Solution

    |

  5. The vertices B and D of a parallelogram are 1-2i and 4-2i If the diago...

    Text Solution

    |

  6. If the complex number z(1) " and " z(2) are such that arg (z(1)) - ar...

    Text Solution

    |

  7. The join of z(1)=a+ib and z(2)=1/(-a+ib) passes through

    Text Solution

    |

  8. If z(1),z(2),z(3),z(4) are the affixes of the four points in the Ar...

    Text Solution

    |

  9. The value of sum(r=1)^(8)(sin((2rpi)/9)+icos((2rpi)/9)), is

    Text Solution

    |

  10. If z(1),z(2),z(3),…,z(n) are n,nth roots of unity, then for k=1,2,3,…n

    Text Solution

    |

  11. If z(1),z(2) and z(3), z(4) are two pairs of conjugate complex numbers...

    Text Solution

    |

  12. If |z(1)|=|z(2)| and arg (z(1))+"arg"(z(2))=0, then

    Text Solution

    |

  13. If one vertex of a square whose diagonals intersect at the origin is 3...

    Text Solution

    |

  14. The value of z satisfying the equation logz+logz^2+dot+logz^n=0i s

    Text Solution

    |

  15. If |z(1)|= |z(2)|= ….= |z(n)|=1, prove that |z(1) + z(2) + …+ z(n)|= |...

    Text Solution

    |

  16. If omega is a cube root of unity and (1+omega)^7=A+Bomega then find th...

    Text Solution

    |

  17. If omega(!=1) is a cube root of unity, then value of the determinant|1...

    Text Solution

    |

  18. Let z and omega be two non-zero complex numbers, such that |z|=|omega|...

    Text Solution

    |

  19. If z ne 0 be a complex number and "arg"(z)=pi//4, then

    Text Solution

    |

  20. (1+i)^8+(1-i)^8=?

    Text Solution

    |