Home
Class 12
MATHS
The value of sum(r=1)^(8)(sin((2rpi)/9)+...

The value of `sum_(r=1)^(8)(sin((2rpi)/9)+icos((2rpi)/9))`, is

A

`-1`

B

1

C

i

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=1}^{8} \left( \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) \right) \), we can follow these steps: ### Step 1: Rewrite the Sum We can rewrite the sum to include \( r = 0 \) for simplification: \[ \sum_{r=1}^{8} \left( \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) \right) = \sum_{r=0}^{8} \left( \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) \right) - \left( \sin(0) + i \cos(0) \right) \] This gives us: \[ = \sum_{r=0}^{8} \left( \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) \right) - i \] ### Step 2: Use Euler's Formula Using Euler's formula, we have: \[ \sin\theta + i \cos\theta = i \left( \cos\theta - i \sin\theta \right) = i e^{-i\theta} \] Thus: \[ \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) = i e^{-i\frac{2r\pi}{9}} \] ### Step 3: Substitute into the Sum Now substituting this back into our sum: \[ \sum_{r=0}^{8} \left( \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) \right) = i \sum_{r=0}^{8} e^{-i\frac{2r\pi}{9}} \] ### Step 4: Recognize the Geometric Series The sum \( \sum_{r=0}^{8} e^{-i\frac{2r\pi}{9}} \) is a geometric series with: - First term \( a = 1 \) - Common ratio \( r = e^{-i\frac{2\pi}{9}} \) - Number of terms \( n = 9 \) The formula for the sum of a geometric series is: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] Substituting the values: \[ S = \frac{1 \left( 1 - \left( e^{-i\frac{2\pi}{9}} \right)^9 \right)}{1 - e^{-i\frac{2\pi}{9}}} \] Since \( \left( e^{-i\frac{2\pi}{9}} \right)^9 = e^{-i2\pi} = 1 \): \[ S = \frac{1 - 1}{1 - e^{-i\frac{2\pi}{9}}} = 0 \] ### Step 5: Final Calculation Thus, we have: \[ \sum_{r=0}^{8} \left( \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) \right) = i \cdot 0 = 0 \] Finally, we subtract \( i \): \[ \sum_{r=1}^{8} \left( \sin\left(\frac{2r\pi}{9}\right) + i \cos\left(\frac{2r\pi}{9}\right) \right) = 0 - i = -i \] ### Conclusion The value of the sum is: \[ \boxed{-i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

sum_(k=1)^6 (sin,(2pik)/7 -icos, (2pik)/7)=?

The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

The value of sec(sin^-1(sin((-50pi)/9))+cos^-1(cos(31pi)/9))

The value of sum_(r=0)^(10)cos^3((rpi)/3) is equal to (a) 1/4 (b) 1/8 (c) -1/4 (d) -1/8

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

The value of [ ( sin ""(pi)/(9)) (4+ sec""(pi)/(9))]^(2) is _______.

The value of : tan^(-1) ( tan ""(9pi)/(8) ) is

If A=pi/5, then find the value of sum_(r=1)^8tan(r A)tan((r+1)A)dot

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. The join of z(1)=a+ib and z(2)=1/(-a+ib) passes through

    Text Solution

    |

  2. If z(1),z(2),z(3),z(4) are the affixes of the four points in the Ar...

    Text Solution

    |

  3. The value of sum(r=1)^(8)(sin((2rpi)/9)+icos((2rpi)/9)), is

    Text Solution

    |

  4. If z(1),z(2),z(3),…,z(n) are n,nth roots of unity, then for k=1,2,3,…n

    Text Solution

    |

  5. If z(1),z(2) and z(3), z(4) are two pairs of conjugate complex numbers...

    Text Solution

    |

  6. If |z(1)|=|z(2)| and arg (z(1))+"arg"(z(2))=0, then

    Text Solution

    |

  7. If one vertex of a square whose diagonals intersect at the origin is 3...

    Text Solution

    |

  8. The value of z satisfying the equation logz+logz^2+dot+logz^n=0i s

    Text Solution

    |

  9. If |z(1)|= |z(2)|= ….= |z(n)|=1, prove that |z(1) + z(2) + …+ z(n)|= |...

    Text Solution

    |

  10. If omega is a cube root of unity and (1+omega)^7=A+Bomega then find th...

    Text Solution

    |

  11. If omega(!=1) is a cube root of unity, then value of the determinant|1...

    Text Solution

    |

  12. Let z and omega be two non-zero complex numbers, such that |z|=|omega|...

    Text Solution

    |

  13. If z ne 0 be a complex number and "arg"(z)=pi//4, then

    Text Solution

    |

  14. (1+i)^8+(1-i)^8=?

    Text Solution

    |

  15. What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n...

    Text Solution

    |

  16. If alpha\ a n d\ beta are different complex numbers with |beta|=1,\ fi...

    Text Solution

    |

  17. For any complex number z, the minimum value of |z|+|z-1|, is

    Text Solution

    |

  18. If (3pi)/(2) gt alpha gt 2 pi, find the modulus and argument of (1 -...

    Text Solution

    |

  19. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  20. Area of the triangle formed by 3 complex numbers, 1+i,i-1,2i, in the A...

    Text Solution

    |