Home
Class 12
MATHS
(1+i)^8+(1-i)^8=?...

`(1+i)^8+(1-i)^8=?`

A

16

B

-16

C

32

D

-32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1+i)^8 + (1-i)^8\), we can follow these steps: ### Step 1: Simplify \((1+i)\) and \((1-i)\) First, we can express \(1+i\) and \(1-i\) in polar form. The modulus and argument of \(1+i\) can be calculated as follows: - Modulus: \(|1+i| = \sqrt{1^2 + 1^2} = \sqrt{2}\) - Argument: \(\tan^{-1}(\frac{1}{1}) = \frac{\pi}{4}\) Thus, we can write: \[ 1+i = \sqrt{2} \left( \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \right) = \sqrt{2} e^{i\frac{\pi}{4}} \] Similarly, for \(1-i\): - Modulus: \(|1-i| = \sqrt{1^2 + (-1)^2} = \sqrt{2}\) - Argument: \(\tan^{-1}(\frac{-1}{1}) = -\frac{\pi}{4}\) So we can write: \[ 1-i = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right) = \sqrt{2} e^{-i\frac{\pi}{4}} \] ### Step 2: Raise to the power of 8 Now we raise both expressions to the power of 8: \[ (1+i)^8 = \left(\sqrt{2} e^{i\frac{\pi}{4}}\right)^8 = (\sqrt{2})^8 \cdot e^{i\frac{8\pi}{4}} = 16 \cdot e^{2\pi i} = 16 \cdot 1 = 16 \] \[ (1-i)^8 = \left(\sqrt{2} e^{-i\frac{\pi}{4}}\right)^8 = (\sqrt{2})^8 \cdot e^{-i\frac{8\pi}{4}} = 16 \cdot e^{-2\pi i} = 16 \cdot 1 = 16 \] ### Step 3: Add the results Now we add the two results together: \[ (1+i)^8 + (1-i)^8 = 16 + 16 = 32 \] ### Final Answer Thus, the final answer is: \[ \boxed{32} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

The smallest positive integer n for which ((1+i)/(1-i))^n=1 is (a) 8 (b) 16 (c) 12 (d) None of these

Simplify the following : (i) i^(97) (ii) i^(8) (iii) (1)/(i^(3)) (iv) (-i)^(14) (v) i^(-22) (vi) i^(-63)

Principle Argument of z=(2+i)/((1+i)^(200)(1-2i)) is 1 dot-pi/4 2. pi/8 3. -pi/2 4. pi/4 5. pi/2

Express the following in the form of a + b i :(i) (-5i)(1/8i) (ii) (-i)(2i)(-1/8i)^3

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

|(1+i, 1-i, i), (1-i, i, 1+i), (i, 1+i, 1-i)|=

Evaluate each of the following: (i) sin^(-1)(sin((13pi)/7)) (ii) sin^(-1)(sin((17pi)/8)) (iii) sin^(-1){sin(-(17pi)/8)}

((1+i)/(sqrt(2)))^8+((1-i)/(sqrt(2)))^8 is equal to

Cube of (-1)/2i s (a) 1/8 (b) 1/(16) (c) -1/8 (d) (-1)/(16)

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. Let z and omega be two non-zero complex numbers, such that |z|=|omega|...

    Text Solution

    |

  2. If z ne 0 be a complex number and "arg"(z)=pi//4, then

    Text Solution

    |

  3. (1+i)^8+(1-i)^8=?

    Text Solution

    |

  4. What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n...

    Text Solution

    |

  5. If alpha\ a n d\ beta are different complex numbers with |beta|=1,\ fi...

    Text Solution

    |

  6. For any complex number z, the minimum value of |z|+|z-1|, is

    Text Solution

    |

  7. If (3pi)/(2) gt alpha gt 2 pi, find the modulus and argument of (1 -...

    Text Solution

    |

  8. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  9. Area of the triangle formed by 3 complex numbers, 1+i,i-1,2i, in the A...

    Text Solution

    |

  10. If omega is a comples cube root of unity, then (1 - omega + omega^(2) ...

    Text Solution

    |

  11. The locus represented by the equation |z-1| = |z-i| is

    Text Solution

    |

  12. If z=i log(2-sqrt(3)) then cosz

    Text Solution

    |

  13. If a=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin gam...

    Text Solution

    |

  14. lf z1,z2,z3 are vertices of an equilateral triangle inscribed in the c...

    Text Solution

    |

  15. The general value of the real angle θ, which satisfies the equation, (...

    Text Solution

    |

  16. State true or false for the following. If z is a complex number such...

    Text Solution

    |

  17. If z + z^(-1)= 1, then find the value of z^(100) + z^(-100).

    Text Solution

    |

  18. Let A,B and C represent the complex number z1, z2, z3 respectively on ...

    Text Solution

    |

  19. Find the number of solutions of the equation z^(2)+|z|^(2)=0.

    Text Solution

    |

  20. The number of solutions of the equation z^(2) + barz =0 is .

    Text Solution

    |