Home
Class 12
MATHS
If (3pi)/(2) gt alpha gt 2 pi, find the ...

If `(3pi)/(2) gt alpha gt 2 pi`, find the modulus and argument of `(1 - cos 2 alpha) + i sin 2 alpha `.

A

`-2cosalpha[cos(pi+alpha)+isin(pi+alpha)]`

B

`2cosalpha[cosalpha+isinalpha}`

C

`2cosalpha[cos(pi-alpha)+isin(pi-alpha)}`

D

`-2cosalpha[cos(pi-alpha)+isin(pi-alpha)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument of the complex number \( z = (1 - \cos 2\alpha) + i \sin 2\alpha \), given that \( \frac{3\pi}{2} > \alpha > 2\pi \), we can follow these steps: ### Step 1: Use Trigonometric Identities We start by using the trigonometric identities for \( \cos 2\alpha \) and \( \sin 2\alpha \): - \( \cos 2\alpha = 1 - 2\sin^2 \alpha \) - \( \sin 2\alpha = 2\sin \alpha \cos \alpha \) ### Step 2: Substitute the Identities Substituting these identities into the expression for \( z \): \[ z = (1 - (1 - 2\sin^2 \alpha)) + i(2\sin \alpha \cos \alpha) \] This simplifies to: \[ z = 2\sin^2 \alpha + i(2\sin \alpha \cos \alpha) \] ### Step 3: Factor Out Common Terms We can factor out \( 2\sin \alpha \): \[ z = 2\sin \alpha (\sin \alpha + i \cos \alpha) \] ### Step 4: Recognize the Form of the Complex Number The expression \( \sin \alpha + i \cos \alpha \) can be rewritten in terms of an exponential form: \[ \sin \alpha + i \cos \alpha = i(\cos \alpha - i \sin \alpha) = i e^{-i\alpha} \] Thus, we have: \[ z = 2\sin \alpha \cdot i e^{-i\alpha} \] ### Step 5: Find the Modulus The modulus of \( z \) is given by: \[ |z| = |2\sin \alpha| \cdot |i| \cdot |e^{-i\alpha}| = 2|\sin \alpha| \] Since \( \alpha \) is in the range \( \frac{3\pi}{2} > \alpha > 2\pi \), \( \sin \alpha \) is negative. Therefore, the modulus is: \[ |z| = -2\sin \alpha \] ### Step 6: Find the Argument The argument of \( z \) can be found as follows: \[ \text{arg}(z) = \text{arg}(2\sin \alpha) + \text{arg}(i) + \text{arg}(e^{-i\alpha}) \] Since \( \text{arg}(2\sin \alpha) = 0 \) (as it is a positive real number), \( \text{arg}(i) = \frac{\pi}{2} \), and \( \text{arg}(e^{-i\alpha}) = -\alpha \): \[ \text{arg}(z) = 0 + \frac{\pi}{2} - \alpha = \frac{\pi}{2} - \alpha \] However, since \( \alpha \) is in the fourth quadrant, we need to adjust the argument: \[ \text{arg}(z) = \frac{3\pi}{2} - \alpha \] ### Final Results Thus, the modulus and argument of \( z \) are: - **Modulus**: \( -2\sin \alpha \) - **Argument**: \( \frac{3\pi}{2} - \alpha \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If (3pi)/2 < alpha < 2pi then the modulus argument of (1+cos 2alpha)+i sin2alpha

If pi/2 < alpha < 3pi /2 then the modulus argument of (1+cos 2alpha)+i sin2alpha

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If pi lt alpha lt (3pi)/2 then find the value of expression sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If 0 lt alpha, beta lt pi and they satisfy cos alpha + cosbeta - cos(alpha + beta)=3/2

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alpha))

If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alpha))

Simplify be reducing to a single term : sin 3 alpha cos 2 alpha + cos 3 alpha sin 2 alpha.

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. If alpha\ a n d\ beta are different complex numbers with |beta|=1,\ fi...

    Text Solution

    |

  2. For any complex number z, the minimum value of |z|+|z-1|, is

    Text Solution

    |

  3. If (3pi)/(2) gt alpha gt 2 pi, find the modulus and argument of (1 -...

    Text Solution

    |

  4. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  5. Area of the triangle formed by 3 complex numbers, 1+i,i-1,2i, in the A...

    Text Solution

    |

  6. If omega is a comples cube root of unity, then (1 - omega + omega^(2) ...

    Text Solution

    |

  7. The locus represented by the equation |z-1| = |z-i| is

    Text Solution

    |

  8. If z=i log(2-sqrt(3)) then cosz

    Text Solution

    |

  9. If a=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin gam...

    Text Solution

    |

  10. lf z1,z2,z3 are vertices of an equilateral triangle inscribed in the c...

    Text Solution

    |

  11. The general value of the real angle θ, which satisfies the equation, (...

    Text Solution

    |

  12. State true or false for the following. If z is a complex number such...

    Text Solution

    |

  13. If z + z^(-1)= 1, then find the value of z^(100) + z^(-100).

    Text Solution

    |

  14. Let A,B and C represent the complex number z1, z2, z3 respectively on ...

    Text Solution

    |

  15. Find the number of solutions of the equation z^(2)+|z|^(2)=0.

    Text Solution

    |

  16. The number of solutions of the equation z^(2) + barz =0 is .

    Text Solution

    |

  17. The centre of a square is at the origin and one of the vertex is 1-i e...

    Text Solution

    |

  18. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  19. The system of equation |z+1+i|=sqrt2 and |z|=3}, (where i=sqrt-1) ha...

    Text Solution

    |

  20. The triangle with vertices at the point z1z2,(1-i)z1+i z2 is

    Text Solution

    |