Home
Class 12
MATHS
If a=cos alpha+i sin alpha, b=cos beta+i...

If `a=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin gamma and b/c+c/a+a/b=1,` then `cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=`

A

`3//2`

B

`-3//2`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start by rewriting the given complex numbers in exponential form and then manipulate the equation accordingly. ### Step 1: Rewrite the complex numbers in exponential form Given: - \( a = \cos \alpha + i \sin \alpha \) - \( b = \cos \beta + i \sin \beta \) - \( c = \cos \gamma + i \sin \gamma \) Using Euler's formula, we can express these as: - \( a = e^{i\alpha} \) - \( b = e^{i\beta} \) - \( c = e^{i\gamma} \) ### Step 2: Substitute into the given equation The equation given is: \[ \frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1 \] Substituting the exponential forms: \[ \frac{e^{i\beta}}{e^{i\gamma}} + \frac{e^{i\gamma}}{e^{i\alpha}} + \frac{e^{i\alpha}}{e^{i\beta}} = 1 \] This simplifies to: \[ e^{i(\beta - \gamma)} + e^{i(\gamma - \alpha)} + e^{i(\alpha - \beta)} = 1 \] ### Step 3: Express in terms of cosine and sine Using Euler's formula again, we can express each term as: \[ e^{i(\beta - \gamma)} = \cos(\beta - \gamma) + i \sin(\beta - \gamma) \] \[ e^{i(\gamma - \alpha)} = \cos(\gamma - \alpha) + i \sin(\gamma - \alpha) \] \[ e^{i(\alpha - \beta)} = \cos(\alpha - \beta) + i \sin(\alpha - \beta) \] ### Step 4: Combine the real and imaginary parts Now, substituting back into the equation: \[ \left( \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) \right) + i \left( \sin(\beta - \gamma) + \sin(\gamma - \alpha) + \sin(\alpha - \beta) \right) = 1 \] ### Step 5: Separate real and imaginary parts For the equation to hold, the real part must equal 1 and the imaginary part must equal 0: 1. Real part: \[ \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = 1 \] 2. Imaginary part: \[ \sin(\beta - \gamma) + \sin(\gamma - \alpha) + \sin(\alpha - \beta) = 0 \] ### Conclusion Thus, we conclude that: \[ \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = 1 \] ### Final Answer The value of \( \cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If a = cos 2 alpha + i sin 2 alpha , b= cos 2 beta + i sin 2 beta , c = cos 2 gamma + i sin 2 gamma and d = cos2 delta + i sin 2 delta then sqrt( abcd) + 1/sqrt( abcd) is :

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

Let A and B denote the statements A: "cos"alpha+"cos"beta+"cos"gamma=""0 B : "sin"alpha+"sin"beta+"sin"gamma=""0 If cos(beta-gamma)""+""cos(gamma-alpha)""+""cos(alpha-beta)""=""""-(3//2) , then (1) A is true and B is false (2) A is false and B is true (3) both A and B are true (4) both A and B are false

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma , then which of the following is/are true:- (a) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2 (b) cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2 (c) sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0 (d) sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. The locus represented by the equation |z-1| = |z-i| is

    Text Solution

    |

  2. If z=i log(2-sqrt(3)) then cosz

    Text Solution

    |

  3. If a=cos alpha+i sin alpha, b=cos beta+isin beta,c=cos gamma+i sin gam...

    Text Solution

    |

  4. lf z1,z2,z3 are vertices of an equilateral triangle inscribed in the c...

    Text Solution

    |

  5. The general value of the real angle θ, which satisfies the equation, (...

    Text Solution

    |

  6. State true or false for the following. If z is a complex number such...

    Text Solution

    |

  7. If z + z^(-1)= 1, then find the value of z^(100) + z^(-100).

    Text Solution

    |

  8. Let A,B and C represent the complex number z1, z2, z3 respectively on ...

    Text Solution

    |

  9. Find the number of solutions of the equation z^(2)+|z|^(2)=0.

    Text Solution

    |

  10. The number of solutions of the equation z^(2) + barz =0 is .

    Text Solution

    |

  11. The centre of a square is at the origin and one of the vertex is 1-i e...

    Text Solution

    |

  12. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  13. The system of equation |z+1+i|=sqrt2 and |z|=3}, (where i=sqrt-1) ha...

    Text Solution

    |

  14. The triangle with vertices at the point z1z2,(1-i)z1+i z2 is

    Text Solution

    |

  15. Let a and b two fixed non-zero complex numbers and z is a variable com...

    Text Solution

    |

  16. The centre of a square ABCD is at z=0, A is z(1). Then, the centroid o...

    Text Solution

    |

  17. If z=x+i y , then the equation |(2z-i)/(z+1)|=m does not represents a ...

    Text Solution

    |

  18. If x^2-2xcos theta+1=0, then the value of x^(2n)-2x^n cosntheta+1, n ...

    Text Solution

    |

  19. If p^(2)-p+1=0, then the value of p^(3n) can be

    Text Solution

    |

  20. The complex number 2^(n)/(1 + i)^(2n) + (1+i)^(2n)/2^(n), n in I is e...

    Text Solution

    |