Home
Class 12
MATHS
If z + z^(-1)= 1, then find the value of...

If `z + z^(-1)= 1`, then find the value of `z^(100) + z^(-100)`.

A

i

B

`-i`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( z + z^{-1} = 1 \) and find the value of \( z^{100} + z^{-100} \), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ z + z^{-1} = 1 \] Multiply both sides by \( z \) to eliminate the fraction: \[ z^2 + 1 = z \] ### Step 2: Rearrange the equation Rearranging the equation gives: \[ z^2 - z + 1 = 0 \] ### Step 3: Use the quadratic formula We can solve for \( z \) using the quadratic formula: \[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -1 \), and \( c = 1 \). Plugging in these values: \[ z = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} \] This simplifies to: \[ z = \frac{1 \pm i\sqrt{3}}{2} \] ### Step 4: Identify the roots The roots can be expressed as: \[ z_1 = \frac{1 + i\sqrt{3}}{2}, \quad z_2 = \frac{1 - i\sqrt{3}}{2} \] These roots correspond to the complex numbers \( \omega \) and \( \omega^2 \), where \( \omega = e^{i\pi/3} \) and \( \omega^2 = e^{-i\pi/3} \). ### Step 5: Find \( z^{100} + z^{-100} \) We can express \( z^{100} + z^{-100} \) using the properties of roots of unity. Since \( z_1 \) and \( z_2 \) are the cube roots of unity, we have: \[ z^{100} = (z^3)^{33} \cdot z = 1^{33} \cdot z = z \] \[ z^{-100} = (z^{-3})^{33} \cdot z^{-1} = 1^{33} \cdot z^{-1} = z^{-1} \] Thus: \[ z^{100} + z^{-100} = z + z^{-1} \] From our original equation, we know: \[ z + z^{-1} = 1 \] ### Final Answer Therefore, the value of \( z^{100} + z^{-100} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If |z +1| = z + 2(1 - i) , then the value of z

If (z-1)/(z+1) is a purely imaginary number (z ne - 1) , then find the value of |z| .

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If z is a non real root of root(7)(-1) , then find the value of z^(86)+z^(175)+z^(289)dot

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If z=10 find the value of z^3-3(z-10). (ii) If p=-10, find the value of p^2-2p-100

It is given the complex numbers z_(1) and z_(2) , |z_(1)| =2 and |z_(2)| =3 . If the included angle of their corresponding vectors is 60^(@) , then find value of |(z_(1) +z_(2))/(z_(1) -z_(2))|

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If |(z-25)/(z-1)| = 5 , the value of |z| is -

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. The general value of the real angle θ, which satisfies the equation, (...

    Text Solution

    |

  2. State true or false for the following. If z is a complex number such...

    Text Solution

    |

  3. If z + z^(-1)= 1, then find the value of z^(100) + z^(-100).

    Text Solution

    |

  4. Let A,B and C represent the complex number z1, z2, z3 respectively on ...

    Text Solution

    |

  5. Find the number of solutions of the equation z^(2)+|z|^(2)=0.

    Text Solution

    |

  6. The number of solutions of the equation z^(2) + barz =0 is .

    Text Solution

    |

  7. The centre of a square is at the origin and one of the vertex is 1-i e...

    Text Solution

    |

  8. Let za n domega be two complex numbers such that |z|lt=1,|omega|lt=1a ...

    Text Solution

    |

  9. The system of equation |z+1+i|=sqrt2 and |z|=3}, (where i=sqrt-1) ha...

    Text Solution

    |

  10. The triangle with vertices at the point z1z2,(1-i)z1+i z2 is

    Text Solution

    |

  11. Let a and b two fixed non-zero complex numbers and z is a variable com...

    Text Solution

    |

  12. The centre of a square ABCD is at z=0, A is z(1). Then, the centroid o...

    Text Solution

    |

  13. If z=x+i y , then the equation |(2z-i)/(z+1)|=m does not represents a ...

    Text Solution

    |

  14. If x^2-2xcos theta+1=0, then the value of x^(2n)-2x^n cosntheta+1, n ...

    Text Solution

    |

  15. If p^(2)-p+1=0, then the value of p^(3n) can be

    Text Solution

    |

  16. The complex number 2^(n)/(1 + i)^(2n) + (1+i)^(2n)/2^(n), n in I is e...

    Text Solution

    |

  17. If arg (z(1)z(2))=0 and |z(1)|=|z(2)|=1, then

    Text Solution

    |

  18. If i = sqrt(-1), omega is non-real cube root of unity then ((1 + i)^(2...

    Text Solution

    |

  19. If z is a complex number satisfying z+z^(-1) =1 " then " z^(n) + z...

    Text Solution

    |

  20. x^(3m) + x^(3n-1) + x^(3r-2), where, m,n,r in N is divisible by

    Text Solution

    |