Home
Class 12
MATHS
If x^2-2xcos theta+1=0, then the value o...

If `x^2-2xcos theta+1=0`, then the value of `x^(2n)-2x^n cosntheta+1, n in N` is equal to

A

`cos 2n theta`

B

`sin 2n theta`

C

0

D

`cos ntheta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given quadratic equation and derive the required expression step by step. ### Step-by-Step Solution: 1. **Given Equation**: We start with the quadratic equation: \[ x^2 - 2x \cos \theta + 1 = 0 \] 2. **Finding Roots**: We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1 \), \( b = -2\cos\theta \), and \( c = 1 \). \[ x = \frac{2\cos\theta \pm \sqrt{(-2\cos\theta)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2} \] \[ = \frac{2\cos\theta \pm 2\sqrt{\cos^2\theta - 1}}{2} \] \[ = \cos\theta \pm \sqrt{\cos^2\theta - 1} \] 3. **Simplifying the Square Root**: Since \( \cos^2\theta - 1 = -\sin^2\theta \), we can rewrite the roots as: \[ x = \cos\theta \pm i\sin\theta \] This can be expressed using Euler's formula: \[ x = e^{i\theta} \quad \text{or} \quad x = e^{-i\theta} \] 4. **Finding \( x^n \)**: Now we need to compute \( x^n \): \[ x^n = (e^{i\theta})^n = e^{in\theta} \quad \text{or} \quad x^n = (e^{-i\theta})^n = e^{-in\theta} \] 5. **Substituting into the Expression**: We need to compute: \[ x^{2n} - 2x^n \cos n\theta + 1 \] Substituting \( x^n = e^{in\theta} \): \[ x^{2n} = (e^{in\theta})^2 = e^{2in\theta} \] Thus, the expression becomes: \[ e^{2in\theta} - 2e^{in\theta} \cos n\theta + 1 \] 6. **Using Euler's Formula**: We can express \( e^{2in\theta} \) as: \[ e^{2in\theta} = \cos(2n\theta) + i\sin(2n\theta) \] And for \( -2e^{in\theta} \cos n\theta \): \[ -2e^{in\theta} \cos n\theta = -2(\cos(n\theta) + i\sin(n\theta)) \cos n\theta \] This simplifies to: \[ -2\cos^2(n\theta) - 2i\sin(n\theta)\cos(n\theta) \] 7. **Combining Terms**: Now combining all terms: \[ (\cos(2n\theta) - 2\cos^2(n\theta) + 1) + i(\sin(2n\theta) - 2\sin(n\theta)\cos(n\theta)) \] 8. **Using Trigonometric Identities**: We can use the identity \( \cos(2n\theta) = 2\cos^2(n\theta) - 1 \): \[ 2\cos^2(n\theta) - 2\cos^2(n\theta) + 1 = 0 \] The imaginary part also simplifies to zero: \[ \sin(2n\theta) - 2\sin(n\theta)\cos(n\theta) = 0 \] 9. **Final Result**: Thus, the entire expression simplifies to: \[ 0 \] ### Conclusion: The value of \( x^{2n} - 2x^n \cos n\theta + 1 \) is equal to \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If x+1/x=2 cos theta , then the value of x^n+1/x^n

If x^2-x+1=0 then the value of sum_[n=1]^[5][x^n+1/x^n]^2 is:

If d/(dx){x^n-a_1x^(n-1)+a_2x^(n-2)++(-1)^n a_n}e^x=x^n e^x , then the value of ar, 0 < r ≤ n, is equal to

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

The total number of terms which are dependent on the value of x in the expansion of (x^2-2+1/(x^2))^n is equal to 2n+1 b. 2n c. n d. n+1

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

If there is a term independent of x in ( x+1/x^2)^n , show that it is equal to (n!)/((n/3)! ((2n)/3)! )

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_nx^n then the value of (C_0)^2+(C_1)^2/2+(C_2)^2/3+...+(C_n)^2/(n+1) is equal to

If y^(1/n)+y^(-1/n) = 2x then (x^2-1)y_2+xy_1 is equal to

For each ositive integer n, define a function f _(n) on [0,1] as follows: f _(n((x)={{:(0, if , x =0),(sin ""(pi)/(2n), if , 0 lt x le 1/n),( sin ""(2pi)/(2n) , if , 1/n lt x le 2/n), (sin ""(3pi)/(2pi), if, 2/n lt x le 3/n), (sin "'(npi)/(2pi) , if, (n-1)/(n) lt x le 1):} Then the value of lim _(x to oo)int _(0)^(1) f_(n) (x) dx is:

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. The centre of a square ABCD is at z=0, A is z(1). Then, the centroid o...

    Text Solution

    |

  2. If z=x+i y , then the equation |(2z-i)/(z+1)|=m does not represents a ...

    Text Solution

    |

  3. If x^2-2xcos theta+1=0, then the value of x^(2n)-2x^n cosntheta+1, n ...

    Text Solution

    |

  4. If p^(2)-p+1=0, then the value of p^(3n) can be

    Text Solution

    |

  5. The complex number 2^(n)/(1 + i)^(2n) + (1+i)^(2n)/2^(n), n in I is e...

    Text Solution

    |

  6. If arg (z(1)z(2))=0 and |z(1)|=|z(2)|=1, then

    Text Solution

    |

  7. If i = sqrt(-1), omega is non-real cube root of unity then ((1 + i)^(2...

    Text Solution

    |

  8. If z is a complex number satisfying z+z^(-1) =1 " then " z^(n) + z...

    Text Solution

    |

  9. x^(3m) + x^(3n-1) + x^(3r-2), where, m,n,r in N is divisible by

    Text Solution

    |

  10. If z is nanreal root of ""^(7)sqrt(-1), then find the value of z ^(86...

    Text Solution

    |

  11. The locus of point z satisfying Re(z^(2))=0, is

    Text Solution

    |

  12. The curve represented by "Im"(z^(2))=k, where k is a non-zero real num...

    Text Solution

    |

  13. If log(tan30^@)[(2|z|^(2)+2|z|-3)/(|z|+1)] lt -2 then |z|=

    Text Solution

    |

  14. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  15. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  16. If omega is a complex cube root of unity, then the equation |z- omega|...

    Text Solution

    |

  17. If omega is a complex cube root of unity, then the equationi |z-omega|...

    Text Solution

    |

  18. The equation zbarz+(4-3i)z+(4+3i)barz+5=0 represents a circle of radiu...

    Text Solution

    |

  19. z is such that a r g ((z-3sqrt(3))/(z+3sqrt(3)))=pi/3 then locus z is

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |