Home
Class 12
MATHS
If log(tan30^@)[(2|z|^(2)+2|z|-3)/(|z|+1...

If `log_(tan30^@)[(2|z|^(2)+2|z|-3)/(|z|+1)] lt -2` then `|z|=`

A

`|z| lt 3//2`

B

`|z| gt 3//2`

C

`|z| gt 2`

D

`|z| lt 2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If log_(sqrt3) |(|z|^2 -|z| +1|)/(|z|+2)|<2 then locus of z is

If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2 , then the locus of z is

If log_(1/2)((|z|^2+2|z|+4)/(2|z|^2+1))<0 then the region traced by z is ___

If |z_(1)-1|lt 1,|z_(2)-2|lt 2,|z_(3)-3|lt 3 , then |z_(1)+z_(2)+z_(3)|

Let z_(1) and z_(2) be two given complex numbers such that z_(1)/z_(2) + z_(2)/z_(1)=1 and |z_(1)| =3 , " then " |z_(1)-z_(2)|^(2) is equal to

If |z|=2a n d(z_1-z_3)/(z_2-z_3)=(z-2)/(z+2) , then prove that z_1, z_2, z_3 are vertices of a right angled triangle.

If 2+z+z^4=0, where z is a complex number then (A) 1/2 lt|z|lt1 (B) 1/2lt|z|lt1/3 (C) |z|ge1 (D) none of these

For x_(1), x_(2), y_(1), y_(2) in R if 0 lt x_(1)lt x_(2)lt y_(1) = y_(2) and z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2) and z_(3) = (z_(1) + z_(2))//2, then z_(1) , z_(2) , z_(3) satisfy :

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)= 2(|z_(1)|^(2) + |z_(2)|^(2))

If |z_(1)|=2,|z_(2)|=3,|z_(3)|=4and|z_(1)+z_(2)+z_(3)|=5. "then"|4z_(2)z_(3)+9z_(3)z_(1)+16z_(1)z_(2)| is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. The locus of point z satisfying Re(z^(2))=0, is

    Text Solution

    |

  2. The curve represented by "Im"(z^(2))=k, where k is a non-zero real num...

    Text Solution

    |

  3. If log(tan30^@)[(2|z|^(2)+2|z|-3)/(|z|+1)] lt -2 then |z|=

    Text Solution

    |

  4. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  5. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  6. If omega is a complex cube root of unity, then the equation |z- omega|...

    Text Solution

    |

  7. If omega is a complex cube root of unity, then the equationi |z-omega|...

    Text Solution

    |

  8. The equation zbarz+(4-3i)z+(4+3i)barz+5=0 represents a circle of radiu...

    Text Solution

    |

  9. z is such that a r g ((z-3sqrt(3))/(z+3sqrt(3)))=pi/3 then locus z is

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If |z-4+3i| leq 1 and m and n be the least and greatest values of |z...

    Text Solution

    |

  12. If 1,alpha,alpha^(2),………..,alpha^(n-1) are the n, n^(th) roots of unit...

    Text Solution

    |

  13. If z(r)(r=0,1,2,…………,6) be the roots of the equation (z+1)^(7)+z^7=0...

    Text Solution

    |

  14. The least positive integer n for which ((1-i)/(1-i))^n=2/pi "sin"^(-1)...

    Text Solution

    |

  15. The area of the triangle formed by the points representing -z,iz and z...

    Text Solution

    |

  16. If z(0)=(1-i)/2, then the value of the product (1+z(0))(1+z(0)^(2))(1+...

    Text Solution

    |

  17. The greatest positive argument of complex number satisfying |z-4|=R e(...

    Text Solution

    |

  18. If the points in the complex plane satisfy the equations log(5)(|z|+3)...

    Text Solution

    |

  19. A complex number z with (Im)(z)=4 and a positive integer n be such tha...

    Text Solution

    |

  20. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |