Home
Class 12
MATHS
z is such that a r g ((z-3sqrt(3))/(z+3s...

z is such that `a r g ((z-3sqrt(3))/(z+3sqrt(3)))=pi/3` then locus z is

A

`|z-3i|=6`

B

`|z-3i|=6, "Im"(z) gt 0`

C

`|z-3i|=6, "Im"(z) lt 0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the complex number \( z \) such that \[ \arg\left(\frac{z - 3\sqrt{3}}{z + 3\sqrt{3}}\right) = \frac{\pi}{3}, \] we can follow these steps: ### Step 1: Express \( z \) in terms of \( x \) and \( y \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then we can rewrite the expression: \[ \arg\left(\frac{(x + iy) - 3\sqrt{3}}{(x + iy) + 3\sqrt{3}}\right) = \frac{\pi}{3}. \] ### Step 2: Rewrite the argument This can be rewritten as: \[ \arg\left(\frac{(x - 3\sqrt{3}) + iy}{(x + 3\sqrt{3}) + iy}\right) = \frac{\pi}{3}. \] ### Step 3: Use the property of arguments The argument of a complex number \( \frac{a + ib}{c + id} \) can be expressed as: \[ \arg(a + ib) - \arg(c + id). \] Thus, we have: \[ \arg((x - 3\sqrt{3}) + iy) - \arg((x + 3\sqrt{3}) + iy) = \frac{\pi}{3}. \] ### Step 4: Apply the tangent function Using the property of the tangent function, we can express the arguments as: \[ \tan^{-1}\left(\frac{y}{x - 3\sqrt{3}}\right) - \tan^{-1}\left(\frac{y}{x + 3\sqrt{3}}\right) = \frac{\pi}{3}. \] ### Step 5: Use the tangent difference formula Using the formula for the difference of two arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right), \] we can set: \[ a = \frac{y}{x - 3\sqrt{3}}, \quad b = \frac{y}{x + 3\sqrt{3}}. \] Thus, we have: \[ \tan^{-1}\left(\frac{\frac{y}{x - 3\sqrt{3}} - \frac{y}{x + 3\sqrt{3}}}{1 + \frac{y^2}{(x - 3\sqrt{3})(x + 3\sqrt{3})}}\right) = \frac{\pi}{3}. \] ### Step 6: Simplify the expression This leads to: \[ \frac{\frac{y}{x - 3\sqrt{3}} - \frac{y}{x + 3\sqrt{3}}}{1 + \frac{y^2}{(x - 3\sqrt{3})(x + 3\sqrt{3})}} = \sqrt{3}. \] ### Step 7: Cross-multiply and simplify Cross-multiplying and simplifying gives us a relationship between \( x \) and \( y \): \[ \frac{y\left((x + 3\sqrt{3}) - (x - 3\sqrt{3})\right)}{(x - 3\sqrt{3})(x + 3\sqrt{3}) + y^2} = \sqrt{3}. \] This simplifies to: \[ \frac{6y}{x^2 - 27 + y^2} = \sqrt{3}. \] ### Step 8: Rearranging the equation Rearranging gives: \[ 6y = \sqrt{3}(x^2 - 27 + y^2). \] ### Step 9: Final form of the locus This leads to the equation of a circle: \[ x^2 + (y - 3)^2 = 36. \] ### Conclusion The locus of \( z \) is a circle with center at \( (0, 3) \) and radius \( 6 \), constrained to the upper half-plane since \( y > 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

lf z = ilog(2-sqrt(3)) , then cos z =

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

If z is a complex number such that |z|=4 and a r g(z)=(5pi)/6 , then z is equal to -2sqrt(3)+2i b. 2sqrt(3)+i c. 2sqrt(3)-2i d. -sqrt(3)+i

Let z_1=10+6i and z_2=4+6idot If z is any complex number such that the argument of ((z-z_1))/((z-z_2)) is pi/4, then prove that |z-7-9i|=3sqrt(2) .

If |z-3+ i|=4 , then the locus of z is

Find the locus of a complex number, z=x +iy , satisfying the relation |(z-3i)/(z+3i)| le sqrt(2) . Illustrate the locus of z in the Argand plane.

The mirror image of the curve arg((z-3)/(z-i))=pi/6, i=sqrt(- 1) in the real axis

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. If log(tan30^@)[(2|z|^(2)+2|z|-3)/(|z|+1)] lt -2 then |z|=

    Text Solution

    |

  2. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  3. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  4. If omega is a complex cube root of unity, then the equation |z- omega|...

    Text Solution

    |

  5. If omega is a complex cube root of unity, then the equationi |z-omega|...

    Text Solution

    |

  6. The equation zbarz+(4-3i)z+(4+3i)barz+5=0 represents a circle of radiu...

    Text Solution

    |

  7. z is such that a r g ((z-3sqrt(3))/(z+3sqrt(3)))=pi/3 then locus z is

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. If |z-4+3i| leq 1 and m and n be the least and greatest values of |z...

    Text Solution

    |

  10. If 1,alpha,alpha^(2),………..,alpha^(n-1) are the n, n^(th) roots of unit...

    Text Solution

    |

  11. If z(r)(r=0,1,2,…………,6) be the roots of the equation (z+1)^(7)+z^7=0...

    Text Solution

    |

  12. The least positive integer n for which ((1-i)/(1-i))^n=2/pi "sin"^(-1)...

    Text Solution

    |

  13. The area of the triangle formed by the points representing -z,iz and z...

    Text Solution

    |

  14. If z(0)=(1-i)/2, then the value of the product (1+z(0))(1+z(0)^(2))(1+...

    Text Solution

    |

  15. The greatest positive argument of complex number satisfying |z-4|=R e(...

    Text Solution

    |

  16. If the points in the complex plane satisfy the equations log(5)(|z|+3)...

    Text Solution

    |

  17. A complex number z with (Im)(z)=4 and a positive integer n be such tha...

    Text Solution

    |

  18. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |

  19. If z(1) and z(2) satisfy the equation |z-2|=|"Re"(z)| and arg(z1-z2)=p...

    Text Solution

    |

  20. If A=|z in C: z=x+ix-1 for all x in R} and |z| le |omega| for all z, o...

    Text Solution

    |