Home
Class 12
MATHS
If z(0)=(1-i)/2, then the value of the p...

If `z_(0)=(1-i)/2`, then the value of the product `(1+z_(0))(1+z_(0)^(2))(1+z_(0)^(2^(2))(1+z_(0)^(2^(3)))…..(1+z_(0)^(2^(n)))` must be

A

`(1-i)(1+1/(2/(2^(n-1))))`, if `n gt 1`

B

`(1-i)(1-1/2^(2^(n))), if n gt 1`

C

`(1-i)(1-1/(2^(n-1))), "if" n gt 1`

D

`(1-i)(1+1/2^(2^(n))), "if" n gt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the product: \[ P = (1 + z_0)(1 + z_0^2)(1 + z_0^{2^2})(1 + z_0^{2^3}) \ldots (1 + z_0^{2^n}) \] where \( z_0 = \frac{1 - i}{2} \). ### Step 1: Rewrite the product using \( z_0 \) Let’s denote the product as \( P \): \[ P = (1 + z_0)(1 + z_0^2)(1 + z_0^{2^2})(1 + z_0^{2^3}) \ldots (1 + z_0^{2^n}) \] ### Step 2: Multiply both sides by \( 1 - z_0 \) Now, we multiply both sides of the equation by \( (1 - z_0) \): \[ (1 - z_0)P = (1 - z_0)(1 + z_0)(1 + z_0^2)(1 + z_0^{2^2}) \ldots (1 + z_0^{2^n}) \] Using the identity \( (1 - z)(1 + z) = 1 - z^2 \), we can simplify the left-hand side: \[ (1 - z_0)P = (1 - z_0^2)(1 + z_0^2)(1 + z_0^{2^2}) \ldots (1 + z_0^{2^n}) \] ### Step 3: Simplify the product Continuing this process, we can express the product as: \[ (1 - z_0)P = (1 - z_0^{2^{n+1}}) \] ### Step 4: Solve for \( P \) Now, we can isolate \( P \): \[ P = \frac{1 - z_0^{2^{n+1}}}{1 - z_0} \] ### Step 5: Calculate \( z_0^{2^{n+1}} \) Next, we need to calculate \( z_0^{2^{n+1}} \): 1. First, calculate \( z_0^2 \): \[ z_0^2 = \left(\frac{1 - i}{2}\right)^2 = \frac{(1 - i)^2}{4} = \frac{1 - 2i + i^2}{4} = \frac{1 - 2i - 1}{4} = \frac{-2i}{4} = -\frac{i}{2} \] 2. Now, calculate \( z_0^{2^{n+1}} \): Using the polar form, we can express \( z_0 \): \[ z_0 = \frac{1}{2} - \frac{i}{2} = \frac{1}{\sqrt{2}} e^{-i\pi/4} \] Thus, \[ z_0^{2^{n+1}} = \left(\frac{1}{\sqrt{2}} e^{-i\pi/4}\right)^{2^{n+1}} = \frac{1}{2^{(n+1)/2}} e^{-i\pi 2^{n+1}/4} \] ### Step 6: Substitute back into \( P \) Substituting \( z_0^{2^{n+1}} \) into the equation for \( P \): \[ P = \frac{1 - \frac{1}{2^{(n+1)/2}} e^{-i\pi 2^{n+1}/4}}{1 - \frac{1 - i}{2}} \] ### Step 7: Simplify the denominator The denominator simplifies to: \[ 1 - \frac{1 - i}{2} = \frac{2 - (1 - i)}{2} = \frac{1 + i}{2} \] ### Step 8: Final expression for \( P \) Thus, we have: \[ P = \frac{2(1 - \frac{1}{2^{(n+1)/2}} e^{-i\pi 2^{n+1}/4})}{1 + i} \] ### Conclusion The final value of the product \( P \) is: \[ P = \frac{2(1 - \frac{1}{2^{(n+1)/2}} e^{-i\pi 2^{n+1}/4})}{1 + i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If z^(2)+z+1=0 then the value of (z+1/z)^(2)+(z^(2)+1/z^(2))^(2)+(z^(3)+1/z^(3))^(2)+....+(z^(21)+1/z^(21))^(2) is equal to

Let the complex numbers z_(1),z_(2) and z_(3) be the vertices of an equailateral triangle. If z_(0) is the circumcentre of the triangle , then prove that z_(1)^(2) + z_(2)^(2) + z_(3)^(2) = 3z_(0)^(2) .

If the tangents at z_(1) , z_(2) on the circle |z-z_(0)|=r intersect at z_(3) , then ((z_(3)-z_(1))(z_(0)-z_(2)))/((z_(0)-z_(1))(z_(3)-z_(2))) equals

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)= 2(|z_(1)|^(2) + |z_(2)|^(2))

If z_(1),z_(2),z_(3) are three complex numbers, such that |z_(1)|=|z_(2)|=|z_(3)|=1 & z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0 then |z_(1)^(3)+z_(2)^(3)+z_(3)^(3)| is equal to _______. (not equal to 1)

If z_(1) , z_(2) and z_(3) are the vertices of DeltaABC , which is not right angled triangle taken in anti-clock wise direction and z_(0) is the circumcentre, then ((z_(0)-z_(1))/(z_(0)-z_(2)))(sin2A)/(sin2B)+((z_(0)-z_(3))/(z_(0)-z_(2)))(sin2C)/(sin2B) is equal to

Given z_(1)=1 -i, z_(2)= -2 + 4i , calculate the values of a and b if a + bi= (z_(1)z_(2))/(z_(1))

If |z_1-z_0|=z_2-z_1=pi/2 , then find z_0 .

The centre of a square ABCD is at z_0dot If A is z_1 , then the centroid of the ABC is 2z_0-(z_1-z_0) (b) (z_0+i((z_1-z_0)/3) (z_0+i z_1)/3 (d) 2/3(z_1-z_0)

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Exercise
  1. If log(tan30^@)[(2|z|^(2)+2|z|-3)/(|z|+1)] lt -2 then |z|=

    Text Solution

    |

  2. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  3. The roots of the cubic equation (z+ ab)^(3) = a^(3), such that a ne 0...

    Text Solution

    |

  4. If omega is a complex cube root of unity, then the equation |z- omega|...

    Text Solution

    |

  5. If omega is a complex cube root of unity, then the equationi |z-omega|...

    Text Solution

    |

  6. The equation zbarz+(4-3i)z+(4+3i)barz+5=0 represents a circle of radiu...

    Text Solution

    |

  7. z is such that a r g ((z-3sqrt(3))/(z+3sqrt(3)))=pi/3 then locus z is

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. If |z-4+3i| leq 1 and m and n be the least and greatest values of |z...

    Text Solution

    |

  10. If 1,alpha,alpha^(2),………..,alpha^(n-1) are the n, n^(th) roots of unit...

    Text Solution

    |

  11. If z(r)(r=0,1,2,…………,6) be the roots of the equation (z+1)^(7)+z^7=0...

    Text Solution

    |

  12. The least positive integer n for which ((1-i)/(1-i))^n=2/pi "sin"^(-1)...

    Text Solution

    |

  13. The area of the triangle formed by the points representing -z,iz and z...

    Text Solution

    |

  14. If z(0)=(1-i)/2, then the value of the product (1+z(0))(1+z(0)^(2))(1+...

    Text Solution

    |

  15. The greatest positive argument of complex number satisfying |z-4|=R e(...

    Text Solution

    |

  16. If the points in the complex plane satisfy the equations log(5)(|z|+3)...

    Text Solution

    |

  17. A complex number z with (Im)(z)=4 and a positive integer n be such tha...

    Text Solution

    |

  18. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |

  19. If z(1) and z(2) satisfy the equation |z-2|=|"Re"(z)| and arg(z1-z2)=p...

    Text Solution

    |

  20. If A=|z in C: z=x+ix-1 for all x in R} and |z| le |omega| for all z, o...

    Text Solution

    |