Home
Class 12
MATHS
If alpha+ibeta=tan^(-1) (z), z=x+iy and ...

If `alpha+ibeta=tan^(-1) (z), z=x+iy` and `alpha` is constant, the locus of 'z' is

A

`x^(2)+y^(2)+2xcot 2alpha=1`

B

`cot 2alpha(x^(2)+y^(2))=1+x`

C

`x^(2)+y^(2)+2ytanalpha=1`

D

`x^(2)+y^(2)+2xsinx2alpha=1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of \( z = x + iy \) given that \( \alpha + i\beta = \tan^{-1}(z) \) and \( \alpha \) is a constant, we can follow these steps: ### Step 1: Set up the equation We start with the equation: \[ \alpha + i\beta = \tan^{-1}(z) = \tan^{-1}(x + iy) \] This gives us our first equation: \[ \alpha + i\beta = \tan^{-1}(x + iy) \] ### Step 2: Find the conjugate Next, we find the conjugate of the equation: \[ \alpha - i\beta = \tan^{-1}(x - iy) \] This gives us our second equation: \[ \alpha - i\beta = \tan^{-1}(x - iy) \] ### Step 3: Add the two equations Now we add the first and second equations: \[ (\alpha + i\beta) + (\alpha - i\beta) = \tan^{-1}(x + iy) + \tan^{-1}(x - iy) \] This simplifies to: \[ 2\alpha = \tan^{-1}(x + iy) + \tan^{-1}(x - iy) \] ### Step 4: Use the tangent addition formula Using the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] we can substitute \( a = x + iy \) and \( b = x - iy \): \[ \tan^{-1}(x + iy) + \tan^{-1}(x - iy) = \tan^{-1}\left(\frac{(x + iy) + (x - iy)}{1 - (x + iy)(x - iy)}\right) \] ### Step 5: Simplify the right-hand side Calculating the numerator: \[ (x + iy) + (x - iy) = 2x \] Calculating the denominator: \[ 1 - (x + iy)(x - iy) = 1 - (x^2 + y^2) = 1 - x^2 - y^2 \] Thus, we have: \[ 2\alpha = \tan^{-1}\left(\frac{2x}{1 - (x^2 + y^2)}\right) \] ### Step 6: Take the tangent of both sides Taking the tangent of both sides, we get: \[ \tan(2\alpha) = \frac{2x}{1 - (x^2 + y^2)} \] ### Step 7: Rearranging the equation Rearranging gives us: \[ \tan(2\alpha)(1 - (x^2 + y^2)) = 2x \] Expanding this: \[ \tan(2\alpha) - \tan(2\alpha)(x^2 + y^2) = 2x \] Rearranging further: \[ \tan(2\alpha)(x^2 + y^2) + 2x - \tan(2\alpha) = 0 \] ### Step 8: Final form of the locus Dividing through by \(\tan(2\alpha)\): \[ x^2 + y^2 + \frac{2x}{\tan(2\alpha)} = 1 \] Letting \( k = \cot(2\alpha) \) (since \(\cot(2\alpha) = \frac{1}{\tan(2\alpha)}\)), we can rewrite this as: \[ x^2 + y^2 + 2x \cdot k = 1 \] This represents a circle. ### Conclusion The locus of \( z \) is given by: \[ x^2 + y^2 + 2x \cot(2\alpha) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z=x+iy and real part ((z-1)/(2z+i))=1 then locus of z is

If z = x + iotay and amp((z-1)/(z+1)) = pi/3 , then locus of z is

If z(bar(z+alpha))+barz(z+alpha)=0 , where alpha is a complex constant, then z is represented by a point on

If z=z_0+A( bar z -( bar z _0)), w h e r eA is a constant, then prove that locus of z is a straight line.

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.

Show that the equation a z^3+b z^2+ barb z+ bara =0 has a root alpha such that |alpha|=1,a ,b ,z and alpha belong to the set of complex numbers.

If z = cos alpha + i sin alpha then the amplitude of z^2+barz is:

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

Two radio active nuclei X and Y decay into stable nucleus Z X to Z + 2alpha+ beta^- Y to Z + alpha + 2 beta^+ if Z_1 and Z_2 are atomic numbers of X and Y then

Find the locus of a complex number, z=x +iy , satisfying the relation |(z-3i)/(z+3i)| le sqrt(2) . Illustrate the locus of z in the Argand plane.

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  2. The value of ((1+ i sqrt(3))/(1-isqrt(3)))+ ((1-isqrt(3))/(1+isqrt(3)...

    Text Solution

    |

  3. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  4. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  5. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  6. The value of the expression (1+(1)/(omega))+(1+(1)/(omega^(2)))+(2+(1)...

    Text Solution

    |

  7. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  8. The expression (1+i)^(n1)+(1+i^(3))^(n2) is real iff

    Text Solution

    |

  9. If |{:(6i,3i,1),(4,3i,-1),(20,3,i):}|=x+iy, then (x, y) is equal to

    Text Solution

    |

  10. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  11. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  12. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  13. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  14. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  15. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  16. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  17. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |

  18. If z(1),z(2),z(3), represent vertices of an equilateral triangle such ...

    Text Solution

    |

  19. If P,P^(') represent the complex number z(1) and its additive inverse ...

    Text Solution

    |

  20. Let A(z(1)),B(z(2)),C(z(3)) be the vertices of an equilateral triangle...

    Text Solution

    |