Home
Class 12
MATHS
Sum of the series sum(r=0)^n (-1)^r ^nCr...

Sum of the series `sum_(r=0)^n (-1)^r ^nC_r[i^(5r)+i^(6r)+i^(7r)+i^(8r)]` is

A

`2^(n)`

B

`2^(n//2+1`

C

`n^(n)+2^(n//2+1)`

D

`2^(n)+2^(n//2+1)cos(npi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \[ S = \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left( i^{5r} + i^{6r} + i^{7r} + i^{8r} \right), \] we will break it down step by step. ### Step 1: Simplifying the terms inside the summation The expression inside the summation can be simplified by recognizing the powers of \(i\): \[ i^{5r} + i^{6r} + i^{7r} + i^{8r} = i^{5r} + i^{6r} + i^{7r} + i^{8r}. \] We can express the powers of \(i\) as follows: - \(i^{5r} = i^{4r} \cdot i^r = (1) \cdot i^r = i^r\) (since \(i^4 = 1\)) - \(i^{6r} = i^{4r} \cdot i^{2r} = (1) \cdot (-1)^r = (-1)^r\) - \(i^{7r} = i^{4r} \cdot i^{3r} = (1) \cdot (-i)^r = (-i)^r\) - \(i^{8r} = i^{4r} \cdot i^{4r} = (1) \cdot (1) = 1\) Thus, \[ i^{5r} + i^{6r} + i^{7r} + i^{8r} = i^r + (-1)^r + (-i)^r + 1. \] ### Step 2: Substitute back into the summation Now we can substitute this back into the original summation: \[ S = \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left( i^r + (-1)^r + (-i)^r + 1 \right). \] This can be split into four separate summations: \[ S = \sum_{r=0}^{n} (-1)^r \binom{n}{r} i^r + \sum_{r=0}^{n} (-1)^r \binom{n}{r} (-1)^r + \sum_{r=0}^{n} (-1)^r \binom{n}{r} (-i)^r + \sum_{r=0}^{n} (-1)^r \binom{n}{r} 1. \] ### Step 3: Evaluating each summation 1. **First Summation**: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} i^r = (1 - i)^n \quad \text{(by the Binomial Theorem)} \] 2. **Second Summation**: \[ \sum_{r=0}^{n} (-1)^{2r} \binom{n}{r} = \sum_{r=0}^{n} \binom{n}{r} = 2^n. \] 3. **Third Summation**: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} (-i)^r = (1 + i)^n. \] 4. **Fourth Summation**: \[ \sum_{r=0}^{n} (-1)^r \binom{n}{r} = (1 - 1)^n = 0. \] ### Step 4: Combine the results Now we can combine the results of the four summations: \[ S = (1 - i)^n + 2^n + (1 + i)^n + 0. \] ### Step 5: Simplifying further Using the properties of complex numbers, we can simplify \( (1 - i)^n + (1 + i)^n \): \[ (1 - i)^n = \sqrt{2}^n \left( \cos\left(\frac{n\pi}{4}\right) - i \sin\left(\frac{n\pi}{4}\right) \right), \] \[ (1 + i)^n = \sqrt{2}^n \left( \cos\left(\frac{n\pi}{4}\right) + i \sin\left(\frac{n\pi}{4}\right) \right). \] Adding these two gives: \[ (1 - i)^n + (1 + i)^n = 2\sqrt{2}^n \cos\left(\frac{n\pi}{4}\right). \] ### Final Result Thus, the final result for the sum \(S\) is: \[ S = 2^{n/2 + 1} \cos\left(\frac{n\pi}{4}\right) + 2^n. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

The sum of the series sum_(r=0) ^(n) "r."^(2n)C_(r), is

Sum of the series sum_0^10 (-1)^r 10C_r (1/3^r+8^r/3^(2r)) is

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

sum_(r=0)^n (-1)^r .^nC_r (1+rln10)/(1+ln10^n)^r

The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

Find the sum sum_(r=1)^n r/(r+1)!

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  2. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0,t h e nt ...

    Text Solution

    |

  3. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  4. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  5. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  6. If Re((z+4)/(2z-1)) = 1/2 then z is represented by a point lying on

    Text Solution

    |

  7. The vertices of a square are z(1),z(2),z(3) and z(4) taken in the anti...

    Text Solution

    |

  8. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |

  9. If z(1),z(2),z(3), represent vertices of an equilateral triangle such ...

    Text Solution

    |

  10. If P,P^(') represent the complex number z(1) and its additive inverse ...

    Text Solution

    |

  11. Let A(z(1)),B(z(2)),C(z(3)) be the vertices of an equilateral triangle...

    Text Solution

    |

  12. The area of the triangle (in square units) whose vertices are i, omega...

    Text Solution

    |

  13. Show that the complex number z, satisfying the condition arg ((z -1)/(...

    Text Solution

    |

  14. If A,B,C are three points in the Argand plane representing the complex...

    Text Solution

    |

  15. If z(bar(z+alpha))+barz(z+alpha)=0, where alpha is a complex constant,...

    Text Solution

    |

  16. Let A,B,C be three collinear points which are such that AB.AC=1 and th...

    Text Solution

    |

  17. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  18. If z be a complex number, then |z-3-4i|^(2)+|z+4+2i|^(2)=k represent...

    Text Solution

    |

  19. In Argand diagram, O, P, Q represent the origin, z and z+ iz respectiv...

    Text Solution

    |

  20. If (2z(1))/(3z(2)) is purely imaginary number, then |(z(1)-z(2))/(z(1)...

    Text Solution

    |