Home
Class 12
MATHS
The area of the triangle (in square unit...

The area of the triangle (in square units) whose vertices are `i`, `omega` and `omega^(2)` where `i=sqrt(-1)` and `omega, omega^(2)` are complex cube roots of unity, is

A

`(3sqrt(3))/2`

B

`(3sqrt(3))/(4)`

C

0

D

`sqrt(3)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices at \(i\), \(\omega\), and \(\omega^2\) where \(i = \sqrt{-1}\) and \(\omega\) and \(\omega^2\) are the complex cube roots of unity, we can follow these steps: ### Step 1: Identify the vertices The vertices of the triangle are given as: - \(z_1 = i = 0 + 1i\) - \(z_2 = \omega = \frac{1}{2} - \frac{\sqrt{3}}{2}i\) - \(z_3 = \omega^2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i\) ### Step 2: Convert complex numbers to Cartesian coordinates We can express the vertices in Cartesian coordinates: - \(A(0, 1)\) for \(z_1\) - \(B\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)\) for \(z_2\) - \(C\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\) for \(z_3\) ### Step 3: Use the formula for the area of a triangle The area \(A\) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) can be calculated using the formula: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] ### Step 4: Substitute the coordinates into the formula Substituting the coordinates: - \(x_1 = 0\), \(y_1 = 1\) - \(x_2 = \frac{1}{2}\), \(y_2 = -\frac{\sqrt{3}}{2}\) - \(x_3 = \frac{1}{2}\), \(y_3 = \frac{\sqrt{3}}{2}\) The area becomes: \[ A = \frac{1}{2} \left| 0\left(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right) + \frac{1}{2}\left(\frac{\sqrt{3}}{2} - 1\right) + \frac{1}{2}\left(1 - \left(-\frac{\sqrt{3}}{2}\right)\right) \right| \] ### Step 5: Simplify the expression Calculating each term: - The first term is \(0\). - The second term: \(\frac{1}{2}\left(\frac{\sqrt{3}}{2} - 1\right) = \frac{\sqrt{3}}{4} - \frac{1}{2}\). - The third term: \(\frac{1}{2}\left(1 + \frac{\sqrt{3}}{2}\right) = \frac{1}{2} + \frac{\sqrt{3}}{4}\). Now combine these: \[ A = \frac{1}{2} \left| \left(\frac{\sqrt{3}}{4} - \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{\sqrt{3}}{4}\right) \right| \] \[ = \frac{1}{2} \left| \frac{\sqrt{3}}{4} - \frac{1}{2} + \frac{1}{2} + \frac{\sqrt{3}}{4} \right| \] \[ = \frac{1}{2} \left| \frac{2\sqrt{3}}{4} \right| = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \] ### Step 6: Final area calculation Thus, the area of the triangle is: \[ A = \frac{\sqrt{3}}{4} \text{ square units} \] ### Conclusion The area of the triangle whose vertices are \(i\), \(\omega\), and \(\omega^2\) is \(\frac{\sqrt{3}}{4}\) square units.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

Value of sum_(k = 1)^(100)(i^(k!) + omega^(k!)) , where i = sqrt(-1) and omega is complex cube root of unity , is :

If 1,omega,omega^2 are the cube roots of unity, then /_\ is equal to.....

The value of Sigma_(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1) amd omega is non - real cube root of unity)

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

If omega is a cube root of unity, then 1+omega = …..

If y_(1)=max||z-omega|-|z-omega^(2)|| , where |z|=2 and y_(2)=max||z-omega|-|z-omega^(2)|| , where |z|=(1)/(2) and omega and omega^(2) are complex cube roots of unity, then

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then 1+ omega^(2)= …..

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

The complex number associated with the vertices A, B, C of DeltaABC are e^(i theta),omega,bar omega , respectively [ where omega,bar omega are the com plex cube roots of unity and cos theta > Re(omega) ], then the complex number of the point where angle bisector of A meets cumcircle of the triangle, is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If P,P^(') represent the complex number z(1) and its additive inverse ...

    Text Solution

    |

  2. Let A(z(1)),B(z(2)),C(z(3)) be the vertices of an equilateral triangle...

    Text Solution

    |

  3. The area of the triangle (in square units) whose vertices are i, omega...

    Text Solution

    |

  4. Show that the complex number z, satisfying the condition arg ((z -1)/(...

    Text Solution

    |

  5. If A,B,C are three points in the Argand plane representing the complex...

    Text Solution

    |

  6. If z(bar(z+alpha))+barz(z+alpha)=0, where alpha is a complex constant,...

    Text Solution

    |

  7. Let A,B,C be three collinear points which are such that AB.AC=1 and th...

    Text Solution

    |

  8. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  9. If z be a complex number, then |z-3-4i|^(2)+|z+4+2i|^(2)=k represent...

    Text Solution

    |

  10. In Argand diagram, O, P, Q represent the origin, z and z+ iz respectiv...

    Text Solution

    |

  11. If (2z(1))/(3z(2)) is purely imaginary number, then |(z(1)-z(2))/(z(1)...

    Text Solution

    |

  12. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  13. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |

  14. if the roots of the equation z^(2) + ( p +iq) z + r + is =0 are real ...

    Text Solution

    |

  15. Q. Let z1, z2, z3 be three vertices of an equilateral triangle circums...

    Text Solution

    |

  16. If omega is the complex cube root of unity, then the value of omega+om...

    Text Solution

    |

  17. The locus of z =I +2exp(i(theta + pi/4)) , ( where theta is parameter...

    Text Solution

    |

  18. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  19. If a gt 0 and the equation |z-a^(2)|+|z-2a|=3, represents an ellipse, ...

    Text Solution

    |

  20. For any complex number z , find the minimum value of |z|+|z-2i|dot

    Text Solution

    |