Home
Class 12
MATHS
If z be a complex number, then |z-3-4i...

If z be a complex number, then
`|z-3-4i|^(2)+|z+4+2i|^(2)=k` represents a circle, if k is equal to

A

30

B

40

C

55

D

35

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and determine the value of \( k \) such that the equation represents a circle. ### Step-by-Step Solution: 1. **Let \( z = x + iy \)**: We start by substituting \( z \) with its real and imaginary parts, where \( x \) is the real part and \( y \) is the imaginary part. \[ |z - 3 - 4i|^2 + |z + 4 + 2i|^2 = k \] 2. **Rewrite the modulus expressions**: We can express the moduli as follows: \[ |z - 3 - 4i|^2 = |(x - 3) + i(y - 4)|^2 = (x - 3)^2 + (y - 4)^2 \] \[ |z + 4 + 2i|^2 = |(x + 4) + i(y + 2)|^2 = (x + 4)^2 + (y + 2)^2 \] 3. **Combine the expressions**: Substitute these back into the equation: \[ (x - 3)^2 + (y - 4)^2 + (x + 4)^2 + (y + 2)^2 = k \] 4. **Expand the squares**: Expanding the squares gives: \[ (x^2 - 6x + 9) + (y^2 - 8y + 16) + (x^2 + 8x + 16) + (y^2 + 4y + 4) = k \] 5. **Combine like terms**: Combine all the terms: \[ 2x^2 + 2y^2 - 6x + 8x - 8y + 4y + 9 + 16 + 16 + 4 = k \] Simplifying this: \[ 2x^2 + 2y^2 + 2x - 4y + 45 = k \] 6. **Divide the equation by 2**: To simplify further, divide the entire equation by 2: \[ x^2 + y^2 + x - 2y + \frac{45}{2} = \frac{k}{2} \] 7. **Complete the square**: We will complete the square for \( x \) and \( y \): \[ x^2 + x + \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 + y^2 - 2y + 1 - 1 + \frac{45}{2} = \frac{k}{2} \] This gives: \[ \left(x + \frac{1}{2}\right)^2 + (y - 1)^2 + \frac{45}{2} - \frac{1}{4} - 1 = \frac{k}{2} \] 8. **Simplify the constant terms**: Combine the constants: \[ \frac{45}{2} - \frac{1}{4} - 1 = \frac{90}{4} - \frac{1}{4} - \frac{4}{4} = \frac{85}{4} \] Hence, we have: \[ \left(x + \frac{1}{2}\right)^2 + (y - 1)^2 = \frac{k}{2} - \frac{85}{4} \] 9. **Condition for a circle**: For the equation to represent a circle, the right-hand side must be positive: \[ \frac{k}{2} - \frac{85}{4} > 0 \implies k > \frac{85}{2} = 42.5 \] 10. **Determine the value of \( k \)**: The options given are 30, 40, 55, and 35. The only value that satisfies \( k > 42.5 \) is: \[ k = 55 \] ### Final Answer: Thus, \( k \) is equal to \( 55 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z be any complex number (z!=0) then arg((z-i)/(z+i))=pi/2 represents the curve

Suppose that z is a complex number the satisfies |z-2-2i|lt=1. The maximum value of |2z-4i| is equal to _______.

Suppose that z is a complex number the satisfies |z-2-2i|lt=1. The maximum value of |2i z+4| is equal to _______.

Match the following : {:("Column-I","Column -II"),(" (A) " |z-6i| + |z-8|=k " will represent an ellipse for k equals to " , "(p) 2"),("(B)" ||z-12i+3|-|z-2||=k " will represent hyperbola if k equals to " , "(q) 8"),("(C)" |z=ki| + |z-4|=sqrt(10k) " will represent line segment if k equals to " , " (r) 12 "),("(D)" (z-k+2ki)/(|z-2+4i|)=k " will represent circle if k equals to " , "(s) 11"),(, "(t) 10"):}

If z be any complex number such that |3z-2|+|3z+2|=4 , then show that locus of z is a line-segment.

The equation |z-i|+|z+i|=k, k gt 0 can represent an ellipse, if k=

If z is any complex number satisfying |z - 3 - 2i | less than or equal 2, then the minimum value of |2z - 6 + 5i| is (1) 2 (2) 1 (3) 3 (4) 5

If z=x+iy is a complex number satisfying |z+i/2|^2=|z-i/2|^2 , then the locus of z is

Let z be a complex number. If the minimum value of |z|^2+|z-3|^2+|z-3i|^2 is lambda , then the value of 6lambda is (1) 23 (2) 42 (3) 72 (4) 84

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. Let A,B,C be three collinear points which are such that AB.AC=1 and th...

    Text Solution

    |

  2. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  3. If z be a complex number, then |z-3-4i|^(2)+|z+4+2i|^(2)=k represent...

    Text Solution

    |

  4. In Argand diagram, O, P, Q represent the origin, z and z+ iz respectiv...

    Text Solution

    |

  5. If (2z(1))/(3z(2)) is purely imaginary number, then |(z(1)-z(2))/(z(1)...

    Text Solution

    |

  6. If omega is a cube root of unity then find the value of sin((omega^(10...

    Text Solution

    |

  7. If center of a regular hexagon is at the origin and one of the vertice...

    Text Solution

    |

  8. if the roots of the equation z^(2) + ( p +iq) z + r + is =0 are real ...

    Text Solution

    |

  9. Q. Let z1, z2, z3 be three vertices of an equilateral triangle circums...

    Text Solution

    |

  10. If omega is the complex cube root of unity, then the value of omega+om...

    Text Solution

    |

  11. The locus of z =I +2exp(i(theta + pi/4)) , ( where theta is parameter...

    Text Solution

    |

  12. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  13. If a gt 0 and the equation |z-a^(2)|+|z-2a|=3, represents an ellipse, ...

    Text Solution

    |

  14. For any complex number z , find the minimum value of |z|+|z-2i|dot

    Text Solution

    |

  15. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. If k gt 1, |z(1)| lt k and |(k-z(1)barz(2))/(z(1)-kz(2))|=1, then

    Text Solution

    |

  18. If |z-i|=1 and arg (z) =theta where 0 lt theta lt pi/2, then cottheta-...

    Text Solution

    |

  19. If Re(z)<0 then the value of (1+z+z^2+.....+z^n) cannot exceed

    Text Solution

    |

  20. If z 1 ​ and z 2 ​ are two non zero complex numbers such that ...

    Text Solution

    |