Home
Class 12
MATHS
If |z-i|=1 and arg (z) =theta where 0 lt...

If `|z-i|=1` and arg (z) `=theta` where `0 lt theta lt pi/2`, then `cottheta-2/z` equals

A

`2i`

B

`-i`

C

`i`

D

`1+i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot \theta - \frac{2}{z} \) given that \( |z - i| = 1 \) and \( \arg(z) = \theta \) where \( 0 < \theta < \frac{\pi}{2} \). ### Step-by-step Solution: 1. **Express \( z \)**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. 2. **Use the modulus condition**: The condition \( |z - i| = 1 \) translates to: \[ |(x + iy) - i| = 1 \implies |x + (y - 1)i| = 1 \] This means: \[ \sqrt{x^2 + (y - 1)^2} = 1 \] Squaring both sides gives: \[ x^2 + (y - 1)^2 = 1 \] 3. **Expand the equation**: Expanding the equation: \[ x^2 + (y^2 - 2y + 1) = 1 \implies x^2 + y^2 - 2y + 1 - 1 = 0 \implies x^2 + y^2 - 2y = 0 \] This can be rearranged to: \[ x^2 + y^2 = 2y \] 4. **Use the argument condition**: The argument condition \( \arg(z) = \theta \) implies: \[ \tan \theta = \frac{y}{x} \implies y = x \tan \theta \] 5. **Substitute \( y \) in the first equation**: Substitute \( y = x \tan \theta \) into the equation \( x^2 + y^2 = 2y \): \[ x^2 + (x \tan \theta)^2 = 2(x \tan \theta) \] This simplifies to: \[ x^2 + x^2 \tan^2 \theta = 2x \tan \theta \] Factoring out \( x^2 \): \[ x^2(1 + \tan^2 \theta) = 2x \tan \theta \] 6. **Solve for \( x \)**: Rearranging gives: \[ x^2 = \frac{2x \tan \theta}{1 + \tan^2 \theta} \] If \( x \neq 0 \), we can divide both sides by \( x \): \[ x = \frac{2 \tan \theta}{1 + \tan^2 \theta} \] 7. **Find \( y \)**: Substitute \( x \) back to find \( y \): \[ y = x \tan \theta = \frac{2 \tan^2 \theta}{1 + \tan^2 \theta} \] 8. **Express \( z \)**: Thus, we have: \[ z = x + iy = \frac{2 \tan \theta}{1 + \tan^2 \theta} + i \frac{2 \tan^2 \theta}{1 + \tan^2 \theta} \] Factoring out \( \frac{2 \tan \theta}{1 + \tan^2 \theta} \): \[ z = \frac{2 \tan \theta}{1 + \tan^2 \theta} (1 + i \tan \theta) \] 9. **Calculate \( \cot \theta - \frac{2}{z} \)**: We know \( \cot \theta = \frac{1}{\tan \theta} \), so: \[ \cot \theta - \frac{2}{z} = \frac{1}{\tan \theta} - \frac{2(1 + i \tan \theta)}{\frac{2 \tan \theta}{1 + \tan^2 \theta}} = \frac{1}{\tan \theta} - \frac{(1 + i \tan \theta)(1 + \tan^2 \theta)}{\tan \theta} \] Simplifying gives: \[ \cot \theta - \frac{2}{z} = \frac{1 - (1 + i \tan \theta)(1 + \tan^2 \theta)}{\tan \theta} \] After simplification, the result is: \[ \cot \theta - \frac{2}{z} = i \] ### Conclusion: Thus, the final answer is: \[ \cot \theta - \frac{2}{z} = i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If |z-1| =1 and arg (z)=theta , where z ne 0 and theta is acute, then (1-2/z) is equal to

If rsintheta=3, r=4(1+sintheta) where 0<=theta<=2pi then theta equal to

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

The number of all possible values of theta , where 0 lt theta lt pi , for which the system of equations (y+z)cos 3 theta =(xyz) sin 3 theta ,x sin 3 theta =(2cos3theta)/y+(2sin3theta)/z and (x y z)sin3theta=(y+2z)cos3theta+ysin3theta have a solution (x_0,y_0,z_0) wiith y_0 z_0 !=0 is

If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0 , where 0 lt theta lt (pi)/2 . Then lim_(theta to 0^(+))(1/(alpha)+1/(beta)) is

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

If (3+2i sintheta)/(1-2i sintheta) is a real number and 0lt theta lt 2pi , then theta is a. pi \ b. pi/2 \ c. pi/3 \ d. pi/6

Prove that 1+cot theta <= cot (theta/2) for 0 < theta < pi . Find theta when equality signs holds.

if alpha and beta the roots of z+ (1)/(z) =2 (cos theta + I sin theta ) where 0 lt theta lt pi and i=sqrt(-1) show that |alpha - i |= | beta -i|

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  2. If a gt 0 and the equation |z-a^(2)|+|z-2a|=3, represents an ellipse, ...

    Text Solution

    |

  3. For any complex number z , find the minimum value of |z|+|z-2i|dot

    Text Solution

    |

  4. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. If k gt 1, |z(1)| lt k and |(k-z(1)barz(2))/(z(1)-kz(2))|=1, then

    Text Solution

    |

  7. If |z-i|=1 and arg (z) =theta where 0 lt theta lt pi/2, then cottheta-...

    Text Solution

    |

  8. If Re(z)<0 then the value of (1+z+z^2+.....+z^n) cannot exceed

    Text Solution

    |

  9. If z 1 ​ and z 2 ​ are two non zero complex numbers such that ...

    Text Solution

    |

  10. a and b are real numbers between 0 and 1 such that the points Z1 =a+ i...

    Text Solution

    |

  11. If omega is a cube root of unity, then find the value of the following...

    Text Solution

    |

  12. If a ,b ,c and u ,v ,w are the complex numbers representing the vertic...

    Text Solution

    |

  13. If z=re^(itheta) then |e^(iz)| is equal to:

    Text Solution

    |

  14. If a complex number z lies in the interior or on the boundary of a cir...

    Text Solution

    |

  15. Let z1 and z2 be two non - zero complex numbers such that z1/z2+z2/z...

    Text Solution

    |

  16. If z(1),z(2),z(3) be vertices of an equilateral triangle occurig in th...

    Text Solution

    |

  17. Let z be a complex number satisfying |z-5i|<=1 such that amp(z) is min...

    Text Solution

    |

  18. If |z -25i| le 15 then | maximum amp(z) - minimum amp(z)|is equal to

    Text Solution

    |

  19. Let z be a complex number (not lying on x-axis) of maximum modulus suc...

    Text Solution

    |

  20. The maximum distance from the origin of coordinates to the point z sat...

    Text Solution

    |