Home
Class 12
MATHS
If z=re^(itheta) then |e^(iz)| is equal ...

If `z=re^(itheta)` then `|e^(iz)|` is equal to:

A

`e^(-rsintheta)`

B

`re^(-rsintheta)`

C

`e^(-rcostheta)`

D

`re^(-rcostheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |e^{iz}| \) given that \( z = re^{i\theta} \). ### Step-by-Step Solution: 1. **Substituting for \( z \)**: We start with the expression for \( z \): \[ z = re^{i\theta} \] Therefore, we can express \( iz \) as: \[ iz = i(re^{i\theta}) = r(i e^{i\theta}) \] 2. **Using Euler's Formula**: We can rewrite \( e^{i\theta} \) using Euler's formula: \[ e^{i\theta} = \cos(\theta) + i\sin(\theta) \] Thus, we have: \[ iz = r(i(\cos(\theta) + i\sin(\theta))) = r(i\cos(\theta) - \sin(\theta)) \] 3. **Finding \( e^{iz} \)**: Now we need to find \( e^{iz} \): \[ e^{iz} = e^{r(i\cos(\theta) - \sin(\theta))} \] This can be separated into: \[ e^{iz} = e^{r(-\sin(\theta))} \cdot e^{ir\cos(\theta)} \] 4. **Taking the Modulus**: We want to find the modulus \( |e^{iz}| \): \[ |e^{iz}| = |e^{r(-\sin(\theta))} \cdot e^{ir\cos(\theta)}| \] The modulus of a product is the product of the moduli: \[ |e^{iz}| = |e^{r(-\sin(\theta))}| \cdot |e^{ir\cos(\theta)}| \] 5. **Calculating Each Modulus**: - The modulus of \( e^{r(-\sin(\theta))} \) is: \[ |e^{r(-\sin(\theta))}| = e^{r(-\sin(\theta))} \] - The modulus of \( e^{ir\cos(\theta)} \) is: \[ |e^{ir\cos(\theta)}| = 1 \] (since \( e^{i\text{anything}} \) has a modulus of 1). 6. **Final Result**: Therefore, we have: \[ |e^{iz}| = e^{-r\sin(\theta)} \cdot 1 = e^{-r\sin(\theta)} \] ### Conclusion: The final answer is: \[ |e^{iz}| = e^{-r\sin(\theta)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|129 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|53 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos

Similar Questions

Explore conceptually related problems

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r s inthetadot)

If z is a purely real complex number such that "Re"(z) lt 0 , then, arg(z) is equal to

If z is a complex number, then the area of the triangle (in sq. units) whose vertices are the roots of the equation z^(3)+iz^(2)+2i=0 is equal to (where, i^(2)=-1 )

let z1, z2,z3 be vertices of triangle ABC in an anticlockwise order and angle ACB = theta then z_2-z_3 = (CB)/(CA)(z_1-z3) e^itheta . let p point on a circle with op diameter 2 points Q & R taken on a circle such that angle POQ & QOR= theta if O be origin and PQR are complex no. z1, z2, z3 respectively then z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

The value of e^(itheta) is equal to: A. costheta + sintheta B. costheta-isintheta C. costheta+isintheta D. None of these

Statement-1 : If e^(itheta)=cos theta +isintheta and the value of e^(iA).e^(iB).e^(iC) is equal to -1, where A,B,C are the angles of a triangle. and Statement -2 : In any triangleABC , A + B +C = 180^(@)

If z=(i)^(i)^(((i)))w h e r e i=sqrt(-1),t h e n|z| is equal to 1 b. e^(-pi//2) c. e^(-pi) d. none of these

If the imaginery part of (z-3)/(e^(itheta))+(e^(itheta))/(z-3) is zero, then z can lie on

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

OBJECTIVE RD SHARMA ENGLISH-COMPLEX NUMBERS -Chapter Test
  1. If z lies on the circle |z-1|=1, then (z-2)/z is

    Text Solution

    |

  2. If a gt 0 and the equation |z-a^(2)|+|z-2a|=3, represents an ellipse, ...

    Text Solution

    |

  3. For any complex number z , find the minimum value of |z|+|z-2i|dot

    Text Solution

    |

  4. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. If k gt 1, |z(1)| lt k and |(k-z(1)barz(2))/(z(1)-kz(2))|=1, then

    Text Solution

    |

  7. If |z-i|=1 and arg (z) =theta where 0 lt theta lt pi/2, then cottheta-...

    Text Solution

    |

  8. If Re(z)<0 then the value of (1+z+z^2+.....+z^n) cannot exceed

    Text Solution

    |

  9. If z 1 ​ and z 2 ​ are two non zero complex numbers such that ...

    Text Solution

    |

  10. a and b are real numbers between 0 and 1 such that the points Z1 =a+ i...

    Text Solution

    |

  11. If omega is a cube root of unity, then find the value of the following...

    Text Solution

    |

  12. If a ,b ,c and u ,v ,w are the complex numbers representing the vertic...

    Text Solution

    |

  13. If z=re^(itheta) then |e^(iz)| is equal to:

    Text Solution

    |

  14. If a complex number z lies in the interior or on the boundary of a cir...

    Text Solution

    |

  15. Let z1 and z2 be two non - zero complex numbers such that z1/z2+z2/z...

    Text Solution

    |

  16. If z(1),z(2),z(3) be vertices of an equilateral triangle occurig in th...

    Text Solution

    |

  17. Let z be a complex number satisfying |z-5i|<=1 such that amp(z) is min...

    Text Solution

    |

  18. If |z -25i| le 15 then | maximum amp(z) - minimum amp(z)|is equal to

    Text Solution

    |

  19. Let z be a complex number (not lying on x-axis) of maximum modulus suc...

    Text Solution

    |

  20. The maximum distance from the origin of coordinates to the point z sat...

    Text Solution

    |