Home
Class 12
MATHS
(p^^~q)^^(~p^^q) is...

`(p^^~q)^^(~p^^q)` is

A

a tautology

B

a contradiction

C

both a tauology and a contradiction

D

neither a tauology nor a contradiction

Text Solution

Verified by Experts

The correct Answer is:
B

The truth table of ` ( p ^^ ~ q) ^^( ~ p vv q) ` is a given below:

The last column of the above truth table contains F only . So, the given statement is a contradiction.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved MCQs|5 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise illusration 3|1 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : (p^^~q)^^(~p^^q) and STATEMENT-2 : (pvv~q) vv (~p ^^q)

((p^^q)vv(pvv~q))^^(~p^^~q)) is equivalent to (A) ~p^^~q (B) p^^~q (C) pvv~q (D) ~pvvq

(p ^^ ~q) ^^ (~p vv q) is

The Boolean Expression (p^^~ q)vvqvv(~ p^^q) is equivalent to : (1) ~ p^^q (2) p^^q (3) pvvq (4) pvv~ q

Match the following column s: Column-I " " Column-II Negation of (~ p->q) is " " p. [~(p v q)]^^[p v(~ p)] Negation of (pharrq) " " q. (p^^~ q)vv(~ p^^q) Negation of (pvvq)i s " " r. ~ p^^~ q pharrq is equivalent to " " s. ~ p^^~ q

Using truth tables, prove the following equivalences : (1) ~pvvq-=~(p^^q)to[~pvv(~pvvq)] (2) p""iffq-=(p^^q)vv(~p^^~q) (3) (p^^q)tor-=pto(qtor)

Show that ~(p harr q) -= ( p ^^ ~q) vv(~p ^^q) .

The logically equivalent proposition of phArrq is (p^^q)vv(p^^q) b. (p=>q)^^(p=>q) c. (p^^q)vv(p=>q) d. (p^^q)(pvvq)

The logically equivalent proposition of phArrq is a. (p^^q)vv(p^^q) b. (p=>q)^^(q=>p) c. (p^^q)vv(p=>q) d. (p^^q)(pvvq)

Show that ( p vee q) ^^ ( ~ p ^^ ~ q) is a contradion .