Home
Class 12
MATHS
The negative of p ^^ ~ ( p ^^ r) is...

The negative of ` p ^^ ~ ( p ^^ r)` is

A

` ~ p vv ~ ( p ^^ r)`

B

` ~ p vv ( p ^^ r)`

C

` ~ q ^^ ( q ^^ r)`

D

` ~ q ^^ ~ ( p ^^ r) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the negative of \( p \cap \neg (p \cap r) \), we will use De Morgan's Laws and properties of negation in set theory. Here’s a step-by-step solution: ### Step 1: Write the expression We start with the expression we need to negate: \[ \neg (p \cap \neg (p \cap r)) \] ### Step 2: Apply De Morgan's Law According to De Morgan's Laws, the negation of an intersection can be expressed as the union of the negations. Therefore, we can rewrite the expression as: \[ \neg (p \cap \neg (p \cap r)) = \neg p \cup \neg (\neg (p \cap r)) \] ### Step 3: Simplify the double negation The double negation \( \neg (\neg (p \cap r)) \) simplifies to \( p \cap r \). Thus, we can rewrite our expression: \[ \neg p \cup (p \cap r) \] ### Step 4: Final expression The final expression for the negation of \( p \cap \neg (p \cap r) \) is: \[ \neg p \cup (p \cap r) \] ### Conclusion The negative of \( p \cap \neg (p \cap r) \) is: \[ \neg p \cup (p \cap r) \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

The negative of p ^^ ~ ( ~ q ^^ r) is

The incorrect statement is (A) p →q is logically equivalent to ~p ∨ q. (B) If the truth-values of p, q r are T, F, T respectively, then the truth value of (p ∨ q) ∧ (q ∨ r) is T. (C) ~(p ∨ q ∨ r) = ~p ∧ ~q ∧ ~r (D) The truth-value of p ~ (p ∧ q) is always T

Write the negative of the compound proposition p vv(~pvvq)

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r

(a) If r^(2) = pq , show that p : q is the duplicate ratio of (p + r) : (q + r) . (b) If (p - x) : (q - x) be the duplicate ratio of p : q then show that : (1)/(p) + (1)/(q) = (1)/(r) .

Consider the following statements. p : Hari is clever. q: shyam is fool. r: Shyam is honest. The negation of statement Hari is clever & Shyam is dishonest if and only if shyam is fool is expressed. As.... (1) ~p^^(q⇔~ r) (2) ~(q ⇔(p^^~r)) (3) ~ q ⇔(~ p^^r ) (4) ~(p^^~ r) (5) ~(p^^r)

The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a) (~p^^~q)^^r (b) ~p vv r (c) (p^^r)^^~q (d) (p^^~q)vvr

The set of values of p for which x^2-2px+3p+4 is negative for atleast one real x is

The points (p,q +r) , (q, r+p) and (r, q+p) are "_______" .

Which of the following is not equivalent to (p^^~ q)->r (a) ~(q v ~ p)->r (b) ~ r->(~ p v q) (c) ~((p^^(~ q))^^(~ r)) (d) ~ r->(~ p^^q)