Home
Class 12
MATHS
The negative of p ^^ ~ ( ~ q ^^ r) is...

The negative of ` p ^^ ~ ( ~ q ^^ r)` is

A

` ~ p vv (-q ^^ r)`

B

` ~ p vv ( ~ q vv ~ r) `

C

` p vv ( ~ ^^ r)`

D

` ~ p ^^ ( q vv r)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the negative of the expression \( p \land \neg(\neg q \land r) \), we will follow these steps: ### Step 1: Write the expression The original expression is: \[ p \land \neg(\neg q \land r) \] ### Step 2: Apply De Morgan's Law To find the negation, we apply De Morgan's Law, which states that the negation of a conjunction is the disjunction of the negations. Thus, we have: \[ \neg(p \land \neg(\neg q \land r)) = \neg p \lor \neg(\neg(\neg q \land r)) \] ### Step 3: Simplify the inner negation Now we need to simplify the inner negation: \[ \neg(\neg q \land r) \] Applying De Morgan's Law again, we get: \[ \neg(\neg q \land r) = \neg(\neg q) \lor \neg r = q \lor \neg r \] ### Step 4: Substitute back into the expression Now substitute this back into our expression: \[ \neg p \lor (q \lor \neg r) \] ### Step 5: Rearrange the expression We can rearrange this expression for clarity: \[ \neg p \lor q \lor \neg r \] ### Final Answer Thus, the negative of the expression \( p \land \neg(\neg q \land r) \) is: \[ \neg p \lor q \lor \neg r \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

The negative of p ^^ ~ ( p ^^ r) is

The incorrect statement is (A) p →q is logically equivalent to ~p ∨ q. (B) If the truth-values of p, q r are T, F, T respectively, then the truth value of (p ∨ q) ∧ (q ∨ r) is T. (C) ~(p ∨ q ∨ r) = ~p ∧ ~q ∧ ~r (D) The truth-value of p ~ (p ∧ q) is always T

Observe the following statements I : The dual of [ ~p ^^ q)] vv [ p ^^ {~(q vv ~s)}] is [~(p vv q)] ^^ [p vv{~(q ^^ ~s)}] II : The dual of ~p ^^ [(~q) ^^ (p vv q) ^^ ~r] is ~p vv[~q) vv(p ^^ q) vv ~r] The true statements in the above is/are :

(a) If r^(2) = pq , show that p : q is the duplicate ratio of (p + r) : (q + r) . (b) If (p - x) : (q - x) be the duplicate ratio of p : q then show that : (1)/(p) + (1)/(q) = (1)/(r) .

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r

Which of the following is not equivalent to (p^^~ q)->r (a) ~(q v ~ p)->r (b) ~ r->(~ p v q) (c) ~((p^^(~ q))^^(~ r)) (d) ~ r->(~ p^^q)

The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a) (~p^^~q)^^r (b) ~p vv r (c) (p^^r)^^~q (d) (p^^~q)vvr

Consider the following statements. p : Hari is clever. q: shyam is fool. r: Shyam is honest. The negation of statement Hari is clever & Shyam is dishonest if and only if shyam is fool is expressed. As.... (1) ~p^^(q⇔~ r) (2) ~(q ⇔(p^^~r)) (3) ~ q ⇔(~ p^^r ) (4) ~(p^^~ r) (5) ~(p^^r)

The sum of the first p , q , r terms of an A.P. are a , b , c respectively. Show that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

The sum of the first p , q , r terms of an A.P. are a , b , c respectively. Show that a/p(q-r)+b/q(r-p)+c/r(p-q)=0