Home
Class 12
MATHS
The contra positive of ( ~ p ^^ q) to ~...

The contra positive of ` ( ~ p ^^ q) to ~ r` is

A

` ( p ^^q)to r`

B

` ( p vv q) to r`

C

` r to ( p vv ~ q)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the contrapositive of the expression \( ( \neg p \land q) \to \neg r \), we will follow a systematic approach. The contrapositive of an implication \( A \to B \) is given by \( \neg B \to \neg A \). ### Step-by-Step Solution: 1. **Identify the components of the implication**: - Here, \( A \) is \( \neg p \land q \) and \( B \) is \( \neg r \). 2. **Negate \( B \)**: - We need to find \( \neg B \), which is \( \neg(\neg r) \). - This simplifies to \( r \). 3. **Negate \( A \)**: - Next, we need to find \( \neg A \), which is \( \neg(\neg p \land q) \). - Using De Morgan's laws, this can be rewritten as \( \neg(\neg p) \lor \neg q \). - This simplifies to \( p \lor \neg q \). 4. **Form the contrapositive**: - Now, we can write the contrapositive as \( r \to (p \lor \neg q) \). 5. **Final expression**: - Therefore, the contrapositive of \( ( \neg p \land q) \to \neg r \) is \( r \to (p \lor \neg q) \). ### Final Answer: The contrapositive of \( ( \neg p \land q) \to \neg r \) is \( r \to (p \lor \neg q) \). ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

Write the converse and contra positive of statement "If x-:3=9 , then x=6 "

The incorrect statement is (A) p →q is logically equivalent to ~p ∨ q. (B) If the truth-values of p, q r are T, F, T respectively, then the truth value of (p ∨ q) ∧ (q ∨ r) is T. (C) ~(p ∨ q ∨ r) = ~p ∧ ~q ∧ ~r (D) The truth-value of p ~ (p ∧ q) is always T

Let p, q and r be three statements, then (~p to q) to r is equivalent to

Construct the truth table for the followings statements : (a) (p^^q) to ~ p " " (b) (p^^q) to (pvvq) (c) (p^^q) to r " " (d) [p^^(~r)] to (qvvr)

The positive integers p ,q and r are all primes if p^2 − q^2 = r , then possible value of r is 3 (b) 5 (c) 7 (d) 1

The positive integers p ,q ,&r are all primes if p^2-q^2=r , then find all possible values of r

(a) If r^(2) = pq , show that p : q is the duplicate ratio of (p + r) : (q + r) . (b) If (p - x) : (q - x) be the duplicate ratio of p : q then show that : (1)/(p) + (1)/(q) = (1)/(r) .

The positive integers p ,q and r all are prime if p^2-q^2=r , then possible value of r is 3 (b) 5 (c) 7 (d) 1

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r