Home
Class 12
MATHS
p to q is logically equivalent to...

` p to q` is logically equivalent to

A

`p ^^ ~ q`

B

` ~ p to ~ q`

C

` ( p vv ~ q)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine what `p implies q` (denoted as \( p \rightarrow q \)) is logically equivalent to, we will analyze the truth values of the expression and compare it with other logical expressions. ### Step-by-Step Solution: 1. **Understanding Implication**: The implication \( p \rightarrow q \) can be defined in terms of truth values: - It is **false** only when \( p \) is **true** and \( q \) is **false**. - In all other cases, it is **true**. 2. **Truth Table for \( p \rightarrow q \)**: We can create a truth table for \( p \) and \( q \) to analyze the implication: \[ \begin{array}{|c|c|c|} \hline p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \\ \hline \end{array} \] 3. **Negation of \( q \)**: Next, we find the negation of \( q \) (denoted as \( \neg q \)): \[ \begin{array}{|c|c|c|} \hline p & q & \neg q \\ \hline T & T & F \\ T & F & T \\ F & T & F \\ F & F & T \\ \hline \end{array} \] 4. **Checking Logical Equivalence**: We will check the logical equivalence of \( p \rightarrow q \) with other expressions: a. **\( p \land \neg q \)** (Conjunction): \[ \begin{array}{|c|c|c|c|} \hline p & \neg q & p \land \neg q \\ \hline T & F & F \\ T & T & T \\ F & F & F \\ F & T & F \\ \hline \end{array} \] This does not match \( p \rightarrow q \). b. **\( \neg p \rightarrow \neg q \)** (Contrapositive): \[ \begin{array}{|c|c|c|c|} \hline p & q & \neg p & \neg q & \neg p \rightarrow \neg q \\ \hline T & T & F & F & T \\ T & F & F & T & T \\ F & T & T & F & F \\ F & F & T & T & T \\ \hline \end{array} \] This does not match \( p \rightarrow q \). c. **\( p \lor \neg q \)** (Disjunction): \[ \begin{array}{|c|c|c|c|} \hline p & \neg q & p \lor \neg q \\ \hline T & F & T \\ T & T & T \\ F & F & F \\ F & T & T \\ \hline \end{array} \] This does not match \( p \rightarrow q \). 5. **Final Conclusion**: After checking all combinations, we find that \( p \rightarrow q \) is logically equivalent to \( \neg p \lor q \) (not \( p \) or \( q \)). This can be confirmed by constructing the truth table for \( \neg p \lor q \) and comparing it with \( p \rightarrow q \). ### Final Answer: Thus, \( p \rightarrow q \) is logically equivalent to \( \neg p \lor q \).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : (p rArr q) hArr (~q rArr~p) and STATEMENT-2 : p rArr q is logically equivalent to ~q rArr ~p

Using truth table show that - (p vv q) vv (~ p ^^ q ) is logically equivalent to ~ p.

The incorrect statement is (a) p vec -q is logically equivalent to ~ pvvqdot (b) If the truth-values of p ,q, r are T , F , T respectively, then the truth value of (pvvq)^^(qvvr) is Tdot (c) ~(pvvqvvr)-= ~p^^~ q^^ ~r (d) The truth value of p^^~(p^^q) is always Tdot

The proposition ~(p vv ~q) vv ~(p vv q) is logically equivalent to

The negation of the compound propositions p harr ~q is logically equivalent to

The incorrect statement is (A) p →q is logically equivalent to ~p ∨ q. (B) If the truth-values of p, q r are T, F, T respectively, then the truth value of (p ∨ q) ∧ (q ∨ r) is T. (C) ~(p ∨ q ∨ r) = ~p ∧ ~q ∧ ~r (D) The truth-value of p ~ (p ∧ q) is always T

The compound statement (phArr q)vv(p hArr ~q) is logically equivalent to

Using truth table, prove that : ~[(~p) wedge q] is logically equivalent to p vee (~q) .

(~pvv~q) is logically equivalent to

p ^^ ( q ^^ r) is logically equivalent to