Home
Class 12
MATHS
<b>Statement I:</b> If in a triangle ABC...

Statement I: If in a triangle `ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2,` then one of the angles must be `90^(@).`
Statement II: In any triangle `ABC` `cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C`

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement- 2 is True.

Text Solution

Verified by Experts

In a triangle ABC, we have A+ B +C = `pi`
`thereforecos 2A + cos 2B + cos 2C`
`= 2 cos (A + B} cos (A - B} + 2 cos^(2) C - 1`
`= - 2 cos C cos (A - B) + 2 cos^(2) C - 1`
`= - 2 cos C {cos (A - B) - cos C} - 1`
`= - 2 cos C {cos (A -B) + cos (A+ B)}-1`
`= - 2 cos C {2 cos A cos B} -1`
= -1 - 4 cos A cos B cos C
So, statement-2 is true.
And,
`sin^(2) A + sin^(2) B + sin^(2) C = 2`
`rArr` 1 - cos2A+1 -cos2B+1 - cos2C = 4
`rArr` cos 2A + cos 2B + cos 2C = -1
`rArr` 4cosA cos BcosC = 0 [Using statement- 2]
`rArr` cos A = 0 or cos B = 0 or cos C = 0
`rArrA=pi/2` or `B=(pi)/2`
So, statement-I is true and statement-2 is a correct explanation for statement-I.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|97 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise SOLVED MCQ|2 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

In a triangle ABC, sin A- cos B = Cos C , then angle B is

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

Prove that in triangle A B C ,cos^2A+cos^2B-cos^2C=1-2sinAsinBcosCdot

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then find any one angle.

If in a triangle ABC, cos A +cos B+cos C=3/2 , prove that the triangle is equilateral.

If cos^(2)A+cos^(2)B+cos^(2)C=1 , then triangle ABC is

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to