Home
Class 12
MATHS
Statement-1: In a !ABC, (a+b+c)(tanA/2...

Statement-1: In a `!ABC`,
`(a+b+c)(tanA/2+tanB/2)=2c cotC/2`
Statement-2: In a `!ABC`, a = b cos C + c cos B

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement- 2 is True.

Text Solution

Verified by Experts

Clearly, statement- 2 is true. (see projection formulae in theory)
Now,
`(a+b+c)(tanA/2+tanB/2)`
`=2s{(Delta)/(s(s-a))+(Delta)/(s(s-b))}`
`(2Delta)/((s-a)(s-b))(2s-a-b)=(2Deltac)/((s-a)(s-b))`
`=2csqrt((s(s-c))/((s-a)(s-b)))=2ccotC/2`
So, statement-1 is also true.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|97 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|55 Videos
  • PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise SOLVED MCQ|2 Videos
  • PLANE AND STRAIGHT LINE IN SPACE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|31 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, a (b cos C - c cos B) =

Statement-1: If triangleABC, 3bc=(a-b+c)(a+b-c) then A=120^(@) . and Statement-2: cos 120^(@)=-1/2

In a Delta ABC , If tan\ A/2, tan\ B/2, tan\ C/2 are in A.P. then cos A, cos B, cos C are in

Statement I In any triangle ABC a cos A+b cos B+c cos C le s. Statement II In any triangle ABC sin ((A)/(2))sin ((B)/(2))sin ((C)/(2))le 1/8

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

In Delta ABC , prove that: (a+b+c)/(a-b+c)=cotA/2cotC/2

In a ∆ABC prove that cos((A+B)/(2))=sin(C)/(2)

In Delta ABC if a= 16 , b= 24 and c = 20 then cos B/2

In a △ ABC if a =26, b= 30 and cos C = 63/65 , then r_(2) =

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C